Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Type of study
Language
Publication year range
1.
J Fluoresc ; 20(1): 377-80, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19821015

ABSTRACT

Fura-2 is widely used as a fluorescent probe to monitor dynamic changes in cytosolic free calcium in cells, where Ca(2+) can enter through several types of voltage-operated or ligand-gated channels. However, Fura-2 is also sensitive to other metal ions, such as zinc, which may be involved in ionic channels and receptors. There is interest, in particular, in studying the synapses between mossy fibers and CA3 pyramidal cells which contain both calcium and high quantities of free or loosely bound zinc. We have found, through fluorescence probing, that endogenous zinc inhibits mossy fiber calcium transients. However, since these results might be explained by an effect of the zinc chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) on the spectral properties of Fura-2, we have carried out a validation of the method through fluorescence excitation spectra of the complex Fura-2/calcium, and show that TPEN does not affect these spectra. This supports the idea that the observed calcium enhancement is related to a zinc inhibition of presynaptic calcium mechanisms, and confirms the use of the chelator TPEN as a general procedure for the biophysical study of Ca(II) in the presence of Zn(II) using Fura-2.


Subject(s)
Calcium/metabolism , Cells/metabolism , Chelating Agents/chemistry , Ethylenediamines/chemistry , Fluorescent Dyes/chemistry , Fura-2/chemistry , Zinc/chemistry , Calcium/chemistry , Reproducibility of Results , Solutions , Spectrometry, Fluorescence
2.
Biol Res ; 39(3): 521-30, 2006.
Article in English | MEDLINE | ID: mdl-17106583

ABSTRACT

An important pool of chelatable zinc is present in the synaptic vesicles of mossy fiber terminals from hippocampal CA3 area, being zinc released following single or repetitive electrical stimulation. Previous studies have suggested different synaptic roles for released mossy fiber zinc, including the inhibition of presynaptic calcium and of postsynaptic N-methyl-D-aspartate (NMDA) and gamma amino-butyric acid (GABAA) receptors. The effect of endogenously released zinc on mossy fiber long-term potentiation (LTP) induction also is not yet established. We have investigated the effect of the permeant zinc chelator N,N,N',N'-tetrakis(2-pyridylmethyl) ethylenediamine (TPEN) on mossy fiber calcium and on synaptic transmission, before and during the application of LTP-inducing stimulation. We have found, using the calcium indicator Fura-2, that single and tetanically-evoked mossy fiber calcium signals are both enhanced in the presence of 20 microM TPEN, while the single field potentials are unaffected. As expected, no effect was observed on the single calcium signals or field potentials obtained at the CA3-CA1 synapses, from the CA1 area, which has a lower concentration of vesicular zinc. These results support the idea that at the hippocampal mossy fiber synapses, released zinc inhibits presynaptic calcium mechanisms. A higher concentration of TPEN (100 microM) significantly reduced mossy fiber synaptic transmission but did not prevent the induction of mossy fiber LTP, suggesting that zinc is not required for the formation of this form of LTP.


Subject(s)
Calcium Signaling/drug effects , Chelating Agents/pharmacology , Ethylenediamines/pharmacology , Mossy Fibers, Hippocampal/drug effects , Synaptic Transmission/drug effects , Animals , Calcium Signaling/physiology , Electric Stimulation , Long-Term Potentiation , Rats , Rats, Wistar , Synaptic Transmission/physiology
3.
Biol. Res ; 39(3): 521-530, 2006. ilus
Article in English | LILACS | ID: lil-437384

ABSTRACT

An important pool of chelatable zinc is present in the synaptic vesicles of mossy fiber terminals from hippocampal CA3 area, being zinc released following single or repetitive electrical stimulation. Previous studies have suggested different synaptic roles for released mossy fiber zinc, including the inhibition of presynaptic calcium and of postsynaptic N-methyl-D-aspartate (NMDA) and gamma amino-butiric acid (GABA A) receptors. The effect of endogenously released zinc on mossy fiber long-term potentiation (LTP) induction also is not yet established. We have investigated the effect of the permeant zinc chelator N,N,N',N'-tetrakis(2-pyridylmethyl) ethylenediamine (TPEN) on mossy fiber calcium and on synaptic transmission, before and during the application of LTP-inducing stimulation. We have found, using the calcium indicator Fura-2, that single and tetanically-evoked mossy fiber calcium signals are both enhanced in the presence of 20 ìM TPEN, while the single field potentials are unaffected. As expected, no effect was observed on the single calcium signals or field potentials obtained at the CA3-CA1 synapses, from the CA1 area, which has a lower concentration of vesicular zinc. These results support the idea that at the hippocampal mossy fiber synapses, released zinc inhibits presynaptic calcium mechanisms. A higher concentration of TPEN (100 ìM) significantly reduced mossy fiber synaptic transmission but did not prevent the induction of mossy fiber LTP, suggesting that zinc is not required for the formation of this form of LTP.


Subject(s)
Animals , Rats , Calcium Signaling/drug effects , Chelating Agents/pharmacology , Ethylenediamines/pharmacology , Mossy Fibers, Hippocampal/drug effects , Synaptic Transmission/drug effects , Calcium Signaling/physiology , Electric Stimulation , Long-Term Potentiation , Rats, Wistar , Synaptic Transmission/physiology
4.
Brain Res ; 976(1): 90-9, 2003 Jun 20.
Article in English | MEDLINE | ID: mdl-12763626

ABSTRACT

The induction of long-term potentiation (LTP) in CA1 hippocampal area requires a rise in intracellular postsynaptic calcium. Two major calcium mechanisms may mediate the transmembrane calcium influxes that contribute to this calcium accumulation: the N-methyl-D-aspartate (NMDA) receptor channels, which are voltage dependent and have large calcium permeability and voltage-dependent calcium channels (VDCCs). We have addressed the relative contribution of these routes of calcium entry before and during LTP expression, in synaptically evoked dendritic calcium transients from a population of CA1 pyramidal neurons. Combining the use of the fluorescent calcium indicator Fura-2 with field potential measurements, we observed that the calcium transients evoked by single stimuli, during the maintenance phase of LTP, were enhanced. These transients were not affected by D-2 amino-5-phosphonopentanoate (D-APV) (50 microM), an antagonist of NMDA receptors but were reduced by approximately one-quarter, in the presence of the L-type VDCCs blocker nifedipine (10 microM). During tetanic stimulation (100 Hz, 1 s) the components triggered by the activation of those two calcium mechanisms had comparable magnitudes representing the sum about half of the intracellular calcium accumulation. Thus, following both single and high frequency stimulation, a substantial fraction of calcium entry may occur through other types of VDCCs or be due to calcium release from intracellular stores.


Subject(s)
2-Amino-5-phosphonovalerate/pharmacology , Calcium Channel Blockers/pharmacology , Calcium Signaling/drug effects , Hippocampus/drug effects , Long-Term Potentiation , Nifedipine/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Synapses/physiology , Animals , Calcium Channels, L-Type/drug effects , Calcium Channels, L-Type/physiology , Fluorescent Dyes , Fura-2 , Hippocampus/physiology , Ion Channel Gating , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...