Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Interdiscip Sci ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733473

ABSTRACT

Cancer remains a severe illness, and current research indicates that tumor homing peptides (THPs) play an important part in cancer therapy. The identification of THPs can provide crucial insights for drug-discovery and pharmaceutical industries as they allow for tailored medication delivery towards cancer cells. These peptides have a high affinity enabling particular receptors present upon tumor surfaces, allowing for the creation of precision medications that reduce off-target consequences and enhance cancer patient treatment results. Wet-lab techniques are considered essential tools for studying THPs; however, they're labor-extensive and time-consuming, therefore making prediction of THPs a challenging task for the researchers. Computational-techniques, on the other hand, are considered significant tools in identifying THPs according to the sequence data. Despite many strategies have been presented to predict new THP, there is still a need to develop a robust method with higher rates of success. In this paper, we developed a novel framework, THP-DF, for accurately identifying THPs on a large-scale. Firstly, the peptide sequences are encoded through various sequential features. Secondly, each feature is passed to BiLSTM and attention layers to extract simplified deep features. Finally, an ensemble-framework is formed via integrating sequential- and deep features which are fed to a support vector machine which with 10-fold cross-validation to carry to validate the efficiency. The experimental results showed that THP-DF worked better on both [Formula: see text] and [Formula: see text] datasets by achieving accuracy of > 95% which are higher than existing predictors both datasets. This indicates that the proposed predictor could be a beneficial tool to precisely and rapidly identify THPs and will contribute to the cutting-edge cancer treatment strategies and pharmaceuticals.

2.
J Biomol Struct Dyn ; : 1-12, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38500243

ABSTRACT

Antimicrobial peptides (AMPs) are gaining acceptance and support as a chief antibiotic substitute since they boost human immunity. They retain a wide range of actions and have a low risk of developing resistance, which are critical properties to the pharmaceutical industry for drug discovery. Antibiotic sensitivity, however, is an issue that affects people all around the world and has the potential to one day lead to an epidemic. As cutting-edge therapeutic agents, AMPs are also expected to cure microbial infections. In order to produce tolerable drugs, it is crucial to understand the significance of the basic architecture of AMPs. Traditional laboratory methods are expensive and time-consuming for AMPs testing and detection. Currently, bioinformatics techniques are being successfully applied to the detection of AMPs. In this study, we have developed a novel STacking-based ensemble learning framework for AntiMicrobial Peptide (STAMP) prediction. First, we constructed 84 different baseline models by using 12 different feature encoding schemes and 7 popular machine learning algorithms. Second, these baseline models were trained and employed to create a new probabilistic feature vector. Finally, based on the feature selection strategy, we determined the optimal probabilistic feature vector, which was further utilized for the construction of our stacked model. Resultantly, the STAMP predictor achieved excellent performance during cross-validation with an accuracy and Matthew's correlation coefficient of 0.930 and 0.860, respectively. The corresponding metrics during the independent test were 0.710 and 0.464, respectively. Overall, STAMP achieved a more accurate and stable performance than the baseline models and significantly outperformed the existing predictors, demonstrating the effectiveness of our proposed hybrid framework. Furthermore, STAMP is expected to assist community-wide efforts in identifying AMPs and will contribute to the development of novel therapeutic methods and drug-design for immunity.Communicated by Ramaswamy H. Sarma.

SELECTION OF CITATIONS
SEARCH DETAIL
...