Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Saudi J Biol Sci ; 27(6): 1503-1513, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32489287

ABSTRACT

Due to antimicrobial resistance and the public health hazard of antibiotic growth promoters, there is a grave need to find potential alternatives for sustainable poultry production. Piper betle (PB) and Persicaria odorata (PO) are herbs, which have been reported for antimicrobial, antioxidant, and anti-inflammatory properties. The present study aimed to estimate the influence of different dose supplementation of Piper betle leaf meal (PBLM) and Persicaria odorata leaf meal (POLM) on growth performance, ileal digestibility and gut morphology of broilers chickens. A total of 210 one day-old broiler chicks were randomly grouped into 7 treatments, and each treatment group has 3 replicates (n = 10) with a total number of 30 chicks. The treatments included T1 control (basal diet (BD) with no supplementation), T2 (BD + 2 g/kg PBLM); T3 (BD + 4 g/kg PBLM), T4 (BD + 8 g/kg PBLM), T5 (BD + 2 g/kg POLM), T6 (BD + 4 g/kg POLM), T7 (BD + 8 g/kg POLM). Growth performance, gut morphology and ileal digestibility were measured. Except for T4 (8 g/kg PBLM), graded dose inclusion of PBLM and POLM increased (P < 0.05) the body weight gain (BWG), positively modulated the gut architecture and enhanced nutrient digestibility in both stater and finisher growth phases of broiler chickens. Birds fed on PBLM 4 g/kg (T3), and POLM 8 g/kg (T7) had significantly higher (P < 0.05) BWG with superior (P < 0.05) feed efficiency in the overall growth period. Chickens fed on diets T3 and T7 had longer (P < 0.05) villi for duodenum as well as for jejunum. Furthermore, the birds fed on supplementations T3 and T7 showed improved (P < 0.05) digestibility of ether extract (EE), and dry matter (DM) compared to the control group. However, least (P < 0.05) crude protein (CP) digestibility was recorded for T4. In conclusion, dietary supplementations of PBLM 4 g/kg and POLM 8 g/kg were positively modulated the intestinal microarchitecture with enhanced nutrient digestibility, resulted in maximum body weight gain, thus improved the growth performance of broiler chickens.

2.
Phytother Res ; 29(10): 1501-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26171791

ABSTRACT

The increase in endothelial permeability often promotes edema formation in various pathological conditions. Tumor necrosis factor-alpha (TNF-α), a pro-atherogenic cytokine, impairs endothelial barrier function and causes endothelial dysfunction in early stage of atherosclerosis. Asiaticoside, one of the triterpenoids derived from Centella asiatica, is known to possess antiinflammatory activity. In order to examine the role of asiaticoside in preserving the endothelial barrier, we assessed its effects on endothelial hyperpermeability and disruption of actin filaments evoked by TNF-α in human aortic endothelial cells (HAEC). TNF-α caused an increase in endothelial permeability to fluorescein isothiocyanate (FITC)-dextran. Asiaticoside pretreatment significantly suppressed TNF-α-induced increased permeability. Asiaticoside also prevented TNF-α-induced actin redistribution by suppressing stress fiber formation. However, the increased F to G actin ratio stimulated by TNF-α was not changed by asiaticoside. Cytochalasin D, an actin depolymerizing agent, was used to correlate the anti-hyperpermeability effect of asiaticoside with actin cytoskeleton. Surprisingly, asiaticoside failed to prevent cytochalasin D-induced increased permeability. These results suggest that asiaticoside protects against the disruption of endothelial barrier and actin rearrangement triggered by TNF-α without a significant change in total actin pool. However, asiaticoside seems to work by other mechanisms to maintain the integrity of endothelial barrier rather than stabilizing the F-actin organization.


Subject(s)
Endothelium, Vascular , Triterpenes/pharmacology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Actin Cytoskeleton/drug effects , Actins , Aorta/drug effects , Cell Membrane Permeability , Centella , Drug Antagonism , Endothelial Cells/drug effects , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/ultrastructure , Humans , Plant Extracts , Tumor Necrosis Factor-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...