Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(21): 61089-61105, 2023 May.
Article in English | MEDLINE | ID: mdl-37052834

ABSTRACT

This study aimed to classify the spatiotemporal analysis of rainwater quality before and during the Movement Control Order (MCO) implementation due to the COVID-19 pandemic. Chemometric analysis was carried out on rainwater samples collected from 24-gauge stations throughout Malaysia to determine the samples' chemical content, pH, and conductivity. Other than that, hierarchical agglomerative cluster analysis (HACA) and discriminant analysis (DA) were used to classify the quality of rainwater at each location into four clusters, namely good, satisfactory, moderate, and bad clusters. Note that DA was carried out on the predefined clusters. The reduction in acidity levels occurred in 11 stations (46% of overall stations) after the MCO was implemented. Chemical content and ion abundance followed a downward trend, indicating that Cl- and Na+ were the most dominant among the anions and cations. Apart from that, NH4+, Ca2+, NO3-, and SO42- concentrations were evident in areas with significant anthropogenic activity, as there was a difference in the total chemical content in rainwater when compared before and during the MCO. Based on the dataset before the MCO, 75% of gauge stations were in the good cluster, 8.3% in the satisfactory cluster, 12.5% in the moderate cluster, and 4.2% in the bad cluster. Meanwhile, the dataset during the MCO shows that 72.7% of gauge stations were in the good cluster, 9.1% in the satisfactory cluster, 9.1% in the moderate, and 4.5% in the bad cluster. From this study, the chemometric analysis of the year 2020 rainwater chemical composite dataset strongly indicates that reduction of human activities during MCO affected the quality of rainwater.


Subject(s)
COVID-19 , Rain , Humans , Chemometrics , Pandemics , Environmental Monitoring , Cations
2.
Environ Sci Pollut Res Int ; 28(27): 35613-35627, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33666850

ABSTRACT

Rainwater harvesting is an effective alternative practice, particularly within urban regions, during periods of water scarcity and dry weather. The collected water is mostly utilized for non-potable household purposes and irrigation. However, due to the increase in atmospheric pollutants, the quality of rainwater has gradually decreased. This atmospheric pollution can damage the climate, natural resources, biodiversity, and human health. In this study, the characteristics and physicochemical properties of rainfall were assessed using a qualitative approach. The three-year (2017-2019) data on rainfall in Peninsular Malaysia were analysed via multivariate techniques. The physicochemical properties of the rainfall yielded six significant factors, which encompassed 61.39% of the total variance as a result of industrialization, agriculture, transportation, and marine factors. The purity of rainfall index (PRI) was developed based on subjective factor scores of the six factors within three categories: good, moderate, and bad. Of the 23 variables measured, 17 were found to be the most significant, based on the classification matrix of 98.04%. Overall, three different groups of similarities that reflected the physicochemical characteristics were discovered among the rain gauge stations: cluster 1 (good PRI), cluster 2 (moderate PRI), and cluster 3 (bad PRI). These findings indicate that rainwater in Peninsular Malaysia was suitable for non-potable purposes.


Subject(s)
Conservation of Natural Resources , Water Supply , Climate , Humans , Malaysia , Rain
SELECTION OF CITATIONS
SEARCH DETAIL
...