Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phytopathology ; 112(2): 238-248, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34156264

ABSTRACT

Basal stem rot (BSR) is the most common disease of oil palm (Elaeis guineensis) in Southeast Asia. BSR is caused by a white-rot fungus Ganoderma boninense. The disease is difficult to manage. Therefore, development of novel and environmentally safe approaches to control the disease is important. Species of Burkholderia are known to have diverse lifestyles, some of which can benefit plants by suppressing diseases or increasing plant growth. In the present study, antifungal peptides produced by a bacterial strain isolated from the rhizosphere of an oil palm tree, Burkholderia sp. strain CP01, exhibited strong growth inhibition on G. boninense. A loss-of-function mutant of CP01 was generated, and it has enabled the identification of a 1.2-kDa peptide and its variants as the active antifungal compounds. High-resolution mass spectrometry revealed six analogous compounds with monoisotopic masses similar to the previously reported cyclic lipopeptides occidiofungin and burkholdine. The antifungal compounds of CP01 were secreted into media, and we sought to use CP01 culture extract without living cells to control BSR disease. Glasshouse experiments showed that CP01 culture extract suppressed BSR disease in oil palm seedlings. The ability of CP01 to produce an antifungal substance and suppress plant disease suggests its potential applications as a biofungicide in agriculture.


Subject(s)
Arecaceae , Burkholderia , Ganoderma , Antifungal Agents/pharmacology , Arecaceae/microbiology , Ganoderma/physiology , Lipopeptides , Plant Diseases/microbiology
2.
J Microbiol Biotechnol ; 23(5): 661-7, 2013 May.
Article in English | MEDLINE | ID: mdl-23648856

ABSTRACT

Lipase-producing bacterial strains were isolated from Antarctic soil samples using the tricaprylin agar plate method. Seven strains with relatively strong lipase activities were selected. All of them turned out to be Bacillus pumilus strains by the 16S rRNA gene sequence analysis. Their corresponding lipase genes were cloned, sequenced, and compared. Finally, three different Bacillus pumilus lipases (BPL1, BPL2, and BPL3) were chosen. Their amino acid sequence identities were in the range of 92-98% with the previous Bacillus pumilus lipases. Their optimum temperatures and pHs were measured to be 40 degrees C and pH 9. Lipase BPL1 and lipase BPL2 were stable up to 30 degrees C, whereas lipase BPL3 was stable up to 20 degrees C. Lipase BPL2 was stable within a pH range of 6-10, whereas lipase BPL1 and lipase BPL3 were stable within a pH range of 5-11, showing strong alkaline tolerance. All these lipases exhibited high hydrolytic activity toward pnitrophenyl caprylate (C8). In addition, lipase BPL1 showed high hydrolytic activity toward tributyrin, whereas lipase BPL2 and lipase BPL3 hydrolyzed tricaprylin and castor oil preferentially. These results demonstrated that the three Antarctic Bacillus lipases were alkaliphilic and had a substrate preference toward short- and mediumchain triglycerides. These Antarctic Bacillus lipases might be used in detergent and food industries.


Subject(s)
Bacillus/enzymology , Bacillus/isolation & purification , Bacterial Proteins/chemistry , Lipase/chemistry , Soil Microbiology , Amino Acid Sequence , Antarctic Regions , Bacillus/chemistry , Bacillus/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Cloning, Molecular , Enzyme Stability , Hydrogen-Ion Concentration , Lipase/genetics , Lipase/metabolism , Phylogeny , Substrate Specificity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...