Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5365, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997259

ABSTRACT

The temperature measurement of material inside of an object is one of the key technologies for control of dynamical processes. For this purpose, various techniques such as laser-based thermography and phase-contrast imaging thermography have been studied. However, it is, in principle, impossible to measure the temperature of an element inside of an object using these techniques. One of the possible solutions is measurements of Doppler brooding effect in neutron resonance absorption (NRA). Here we present a method to measure the temperature of an element or an isotope inside of an object using NRA with a single neutron pulse of approximately 100 ns width provided from a high-power laser. We demonstrate temperature measurements of a tantalum (Ta) metallic foil heated from the room temperature up to 617 K. Although the neutron energy resolution is fluctuated from shot to shot, we obtain the temperature dependence of resonance Doppler broadening using a reference of a silver (Ag) foil kept to the room temperature. A free gas model well reproduces the results. This method enables element(isotope)-sensitive thermometry to detect the instantaneous temperature rise in dynamical processes.

2.
Opt Express ; 30(24): 43491-43502, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36523045

ABSTRACT

A counter-propagating laser-beam platform using a spherical plasma mirror was developed for the kilojoule-class petawatt LFEX laser. The temporal and spatial overlaps of the incoming and redirected beams were measured with an optical interferometer and an x-ray pinhole camera. The plasma mirror performance was evaluated by measuring fast electrons, ions, and neutrons generated in the counter-propagating laser interaction with a Cu-doped deuterated film on both sides. The reflectivity and peak intensity were estimated as ∼50% and ∼5 × 1018 W/cm2, respectively. The platform could enable studies of counter-streaming charged particles in high-energy-density plasmas for fundamental and inertial confinement fusion research.

3.
Appl Opt ; 61(9): 2398-2405, 2022 Mar 20.
Article in English | MEDLINE | ID: mdl-35333259

ABSTRACT

Here, we present an overview on the recent progress in the development of the laser-driven neutron source (LDNS) and nuclear resonance absorption (NRA) imaging at the Institute of Laser Engineering (ILE), Osaka University. The LDNS is unique because the number of neutrons per micro pulse is very large, and the source size and the pulse width are small. Consequently, extensive research and development of LDNSs is going on around the world. In this paper, a typical neutron generation process by the laser-driven ion beam, called the pitcher-catcher scheme, is described. The characteristics of the LDNS are compared with those of the accelerator-driven neutron source (ADNS), and unique application of the LDNS, such as NRA imaging, is presented. In the LDNS, NRA imaging is possible with a relatively short beam line in comparison with that of the ADNS since the neutron pulse width and the source size of the LDNS are small. Future prospects in research and development of NRA imaging with the LDNS at ILE Osaka University are also described.

4.
Phys Rev Lett ; 127(16): 165001, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34723597

ABSTRACT

Ablative Rayleigh-Taylor instability growth was investigated to elucidate the fundamental physics of thermal conduction suppression in a magnetic field. Experiments found that unstable modulation growth is faster in an external magnetic field. This result was reproduced by a magnetohydrodynamic simulation based on a Braginskii model of electron thermal transport. An external magnetic field reduces the electron thermal conduction across the magnetic field lines because the Larmor radius of the thermal electrons in the field is much shorter than the temperature scale length. Thermal conduction suppression leads to spatially nonuniform pressure and reduced thermal ablative stabilization, which in turn increases the growth of ablative Rayleigh-Taylor instability.

5.
Rev Sci Instrum ; 91(6): 063304, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32611003

ABSTRACT

The nuclear burn history provides critical information about the dynamics of the hot-spot formation and high-density fuel-shell assembly of an Inertial Confinement Fusion (ICF) implosion, as well as information on the impact of alpha heating, and a multitude of implosion failure mechanisms. Having this information is critical for assessing the energy-confinement time τE and performance of an implosion. As the confinement time of an ICF implosion is a few tens of picoseconds, less than 10-ps time resolution is required for an accurate measurement of the nuclear burn history. In this study, we propose a novel 1-ps time-resolution detection scheme based on the Pockels effect. In particular, a conceptual design for the experiment on the National Ignition Facility and OMEGA are elaborated upon herein. A small organic Pockels crystal "DAST" is designed to be positioned ∼5 mm from the ICF implosion, which is scanned by a chirped pulse generated by a femto-second laser transmitted through a polarization-maintained optical fiber. The originally linearly polarized laser is changed to an elliptically polarized laser by the Pockels crystal when exposed to neutrons, and the modulation of the polarization will be analyzed. Our study using 35-MeV electrons showed that the system impulse response is 0.6 ps. The response time is orders of magnitude shorter than current systems. Through measurements of the nuclear burn history with unprecedented time resolution, this system will help for a better understanding of the dynamics of the hot-spot formation, high-density fuel-shell assembly, and the physics of thermonuclear burn wave propagation.

6.
Phys Rev Lett ; 124(3): 035001, 2020 Jan 24.
Article in English | MEDLINE | ID: mdl-32031862

ABSTRACT

Fast isochoric laser heating is a scheme to heat matter with a relativistic intensity (>10^{18} W/cm^{2}) laser pulse for producing an ultrahigh-energy-density (UHED) state. We have demonstrated an efficient fast isochoric heating of a compressed dense plasma core with a multipicosecond kilojoule-class petawatt laser and an assistance of externally applied kilotesla magnetic fields for guiding fast electrons to the dense plasma. A UHED state of 2.2 PPa is achieved experimentally with 4.6 kJ of total laser energy that is one order of magnitude lower than the energy used in the conventional implosion scheme. A two-dimensional particle-in-cell simulation confirmed that diffusive heating from a laser-plasma interaction zone to the dense plasma plays an essential role to the efficient creation of the UHED state.

7.
Nat Commun ; 9(1): 3937, 2018 09 26.
Article in English | MEDLINE | ID: mdl-30258053

ABSTRACT

Fast isochoric heating of a pre-compressed plasma core with a high-intensity short-pulse laser is an attractive and alternative approach to create ultra-high-energy-density states like those found in inertial confinement fusion (ICF) ignition sparks. Laser-produced relativistic electron beam (REB) deposits a part of kinetic energy in the core, and then the heated region becomes the hot spark to trigger the ignition. However, due to the inherent large angular spread of the produced REB, only a small portion of the REB collides with the core. Here, we demonstrate a factor-of-two enhancement of laser-to-core energy coupling with the magnetized fast isochoric heating. The method employs a magnetic field of hundreds of Tesla that is applied to the transport region from the REB generation zone to the core which results in guiding the REB along the magnetic field lines to the core. This scheme may provide more efficient energy coupling compared to the conventional ICF scheme.

8.
Phys Rev E ; 95(5-1): 053204, 2017 May.
Article in English | MEDLINE | ID: mdl-28618498

ABSTRACT

Recent progress in the generation in the laboratory of a strong (>100-T) magnetic field enables us to investigate experimentally unexplored magnetohydrodynamics phenomena of a high-energy-density plasma, which an external magnetic field of 200-300 T notably affects due to anisotropic thermal conduction, even when the magnetic field pressure is much lower than the plasma pressure. The external magnetic field reduces electron thermal conduction across the external magnetic field lines because the Larmor radius of the thermal electrons in the external magnetic field is much shorter than the mean free path of the thermal electrons. The velocity of a thin polystyrene foil driven by intense laser beams in the strong external magnetic field is faster than that in the absence of the external magnetic field. Growth of sinusoidal corrugation imposed initially on the laser-driven polystyrene surface is enhanced by the external magnetic field because the plasma pressure distribution becomes nonuniform due to the external magnetic-field structure modulated by the perturbed plasma flow ablated from the corrugated surface.

9.
Rev Sci Instrum ; 87(4): 043502, 2016 04.
Article in English | MEDLINE | ID: mdl-27131669

ABSTRACT

Hard X-ray spectroscopy is an essential diagnostics used to understand physical processes that take place in high energy density plasmas produced by intense laser-plasma interactions. A bundle of hard X-ray detectors, of which the responses have different energy thresholds, is used as a conventional single-shot spectrometer for high-flux (>10(13) photons/shot) hard X-rays. However, high energy resolution (Δhv/hv < 0.1) is not achievable with a differential energy threshold (DET) X-ray spectrometer because its energy resolution is limited by energy differences between the response thresholds. Experimental demonstration of a Compton X-ray spectrometer has already been performed for obtaining higher energy resolution than that of DET spectrometers. In this paper, we describe design details of the Compton X-ray spectrometer, especially dependence of energy resolution and absolute response on photon-electron converter design and its background reduction scheme, and also its application to the laser-plasma interaction experiment. The developed spectrometer was used for spectroscopy of bremsstrahlung X-rays generated by intense laser-plasma interactions using a 200 µm thickness SiO2 converter. The X-ray spectrum obtained with the Compton X-ray spectrometer is consistent with that obtained with a DET X-ray spectrometer, furthermore higher certainly of a spectral intensity is obtained with the Compton X-ray spectrometer than that with the DET X-ray spectrometer in the photon energy range above 5 MeV.

10.
Article in English | MEDLINE | ID: mdl-26172803

ABSTRACT

A series of experiments were carried out to evaluate the energy-coupling efficiency from heating laser to a fuel core in the fast-ignition scheme of laser-driven inertial confinement fusion. Although the efficiency is determined by a wide variety of complex physics, from intense laser plasma interactions to the properties of high-energy density plasmas and the transport of relativistic electron beams (REB), here we simplify the physics by breaking down the efficiency into three measurable parameters: (i) energy conversion ratio from laser to REB, (ii) probability of collision between the REB and the fusion fuel core, and (iii) fraction of energy deposited in the fuel core from the REB. These three parameters were measured with the newly developed experimental platform designed for mimicking the plasma conditions of a realistic integrated fast-ignition experiment. The experimental results indicate that the high-energy tail of REB must be suppressed to heat the fuel core efficiently.

11.
Rev Sci Instrum ; 85(11): 11D634, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25430210

ABSTRACT

A Compton-scattering-based X-ray spectrometer is developed to obtain the energy distribution of fast electrons produced by intense laser and matter interactions. Bremsstrahlung X-rays generated by fast electrons in a material are used to measure fast electrons' energy distribution in matter. In the Compton X-ray spectrometer, X-rays are converted into recoil electrons by Compton scattering in a converter made from fused silica glass, and a magnet-based electron energy analyzer is used to measure the energy distribution of the electrons that recoil in the direction of the incident X-rays. The spectrum of the incident X-rays is reconstructed from the energy distribution of the recoil electrons. The accuracy of this spectrometer is evaluated using a quasi-monoenergetic 6 MeV electron bunch that emanates from a linear accelerator. An electron bunch is injected into a 1.5 mm thick tungsten plate to produce bremsstrahlung X-rays. The spectrum of these bremsstrahlung X-rays is obtained in the range from 1 to 9 MeV. The energy of the electrons in the bunch is estimated using a Monte Carlo simulation of particle-matter interactions. The result shows that the spectrometer's energy accuracy is ±0.5 MeV for 6.0 MeV electrons.

12.
Rev Sci Instrum ; 81(10): 106105, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21034133

ABSTRACT

The characteristics of an APLF80+3Ce scintillator are presented. Its sufficiently fast decay profile, low afterglow, and an improved light output compared to the recently developed APLF80+3Pr, were experimentally demonstrated. This scintillator material holds promise for applications in neutron imaging diagnostics at the energy regions of 0.27 MeV of DD fusion down-scattered neutron peak at the world's largest inertial confinement fusion facilities such as the National Ignition Facility and the Laser Mégajoule.

13.
Rev Sci Instrum ; 80(11): 113504, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19947728

ABSTRACT

Experimental results are presented on the neutron scintillating properties of a custom-designed Pr3+ (praseodymium)-doped lithium (Li) glass. Luminescence was observed at 278 nm wavelength, originating from the 5d-4f transition. Time-resolved measurements yielded about 20 ns decay times for ultraviolet and x-ray excitation while much faster decay times of about 6 ns were observed for alpha particle and neutron excitation. Actual time-of-flight data in laser fusion experiments at the GEKKO XII facility of the Institute of Laser Engineering, Osaka University reveal that it can clearly discriminate fusion neutrons from the much stronger x-rays signals. This material can promise improved accuracy in future scattered neutron diagnostics.

SELECTION OF CITATIONS
SEARCH DETAIL
...