Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 19(34): 11251-60, 2013 Aug 19.
Article in English | MEDLINE | ID: mdl-23821553

ABSTRACT

We present herein the synthesis and properties of the largest hitherto unknown graphyne fragment, namely trigonally expanded tetrakis(dehydrobenzo[12]annulene)s (tetrakis-DBAs). Intramolecular three-fold alkyne metathesis reactions of hexakis(arylethynyl)DBAs 9 a and 9 b using Fürstner's Mo catalyst furnished tetrakis-DBAs 8 a and 8 b substituted with tert-butyl or branched alkyl ester groups in moderate and fair yields, respectively, demonstrating that the metathesis reaction of this protocol is a powerful tool for the construction of graphyne fragment backbones. For comparison, hexakis(arylethynyl)DBAs 9 c-g have also been prepared. The one-photon absorption spectrum of tetrakis-DBA 8 a bearing tert-butyl groups revealed a remarkable bathochromic shift of the absorption cut-off (λcutoff ) compared with those of previously reported graphyne fragments due to extended π-conjugation. Moreover, in the two-photon absorption spectrum, 8 a showed a large cross-section for a pure hydrocarbon because of the planar para-phenylene-ethynylene conjugation pathways. Hexakis(arylethynyl)-DBAs 9 c-e and 9 g and tetrakis-DBA 8 b bearing electron-withdrawing groups aggregated in chloroform solutions. Comparison between the free energies of 9 e and 8 b bearing the same substituents revealed the more favorable association of the latter due to stronger π-π interactions between the extended π-cores. Polarized optical microscopy observations, DSC, and XRD measurements showed that 8 b and 9 e with branched alkyl ester groups displayed columnar rectangular mesophases. By the time-resolved microwave conductivity method, the columnar rectangular phase of 8 b was shown to exhibit a moderate charge-carrier mobility of 0.12 cm(2) V(-1) s(-1) . These results indicate that large graphyne fragments can serve as good organic semiconductors.

2.
Langmuir ; 27(4): 1530-5, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21090665

ABSTRACT

Electron transfer through α-helices has attracted much attention from the viewpoints of their contributions to efficient long-range electron transfer occurring in biological systems and their utility as molecular-electronics elements. In this study, we synthesized a long 80mer helical peptide carrying a redox-active ferrocene unit at the terminal and immobilized the helical peptide on a gold surface. The molecular length is calculated to be 134 Å, in which the helix accounts for 120 Å. The preparation conditions of the self-assembled monolayers were intentionally changed to obtain monolayers with different physical states to study the correlation between molecular motions and electron transfer. Ellipsometry and infrared spectroscopy showed that the helical peptide forms a self-assembled monolayer with vertical orientation. Electrochemical measurements revealed that an electron is transferred from the ferrocene unit to gold through the monolayer composed of this long helical peptide, and the experimental data are well explained by theoretical results calculated under the assumption that electron transfer occurs by a unique hopping mechanism with the amide groups as hopping sites. Furthermore, we have observed a unique dependence of electron transfer on the monolayer packing, suggesting the importance of structural fluctuations of peptides on the electron transfer controlled by the hopping mechanism.


Subject(s)
Gold/chemistry , Peptides/chemistry , Circular Dichroism , Electrochemistry , Spectrophotometry, Infrared
4.
J Phys Chem B ; 113(18): 6256-66, 2009 May 07.
Article in English | MEDLINE | ID: mdl-19361180

ABSTRACT

Helical peptides carrying a ferrocene unit at the C-terminus were immobilized on gold at the N-terminus via three different linkers to form self-assembled monolayers, and the long-range electron transfer from the ferrocene unit to gold was electrochemically studied. The linkers are 4-thiobenzoic acid, 3-fluoro-4-thiobenzoic acid, and 2-methoxy-4-thiobenzoic acid. All the peptides formed a monolayer with vertical orientation but some differences in monolayer packing and ferrocene surface density as they formed. However, the treatment with dodecanethiol in a gas phase uniformed to show similar monolayer physical parameters, and the electron-transfer rate constants were reproducibly obtained as well. These three peptide monolayers exhibited the same electron-transfer rate constants despite three linkers with different oxidation potentials. On the other hand, the electron transfer was decelerated seemingly by reducing the ferrocene surface density. Theoretical calculations with simple models demonstrated that the experimental result supports a hopping mechanism rather than electron tunneling though it cannot be fully excluded.


Subject(s)
Peptides/chemistry , Chromatography, Thin Layer , Electrochemistry , Electrons , Gold/chemistry , Kinetics , Nuclear Magnetic Resonance, Biomolecular , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...