Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(30): 36975-36987, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37477944

ABSTRACT

Flexible metal-organic frameworks (MOFs) are innovative adsorbents expected to revolutionize conventional separation systems as they exhibit stepwise adsorption arising from structural transitions, commonly known as "gate opening." However, because MOFs are typically obtained in powder form, they require shaping for industrial applications. In our previous study, we reported that the stepwise uptake observed in the CO2 gate opening of ELM-11 ([Cu(BF4)2(4,4'-bipyridine)2]) became less distinct when molded with polymer binders and found that this slacking phenomenon could be caused by the polymer binder inhibiting the structural change of the ELM-11 particles. In this study, we aimed to fully validate and generalize the mechanism behind the slacking of gate adsorption from both theoretical and experimental perspectives. First, we conducted grand canonical molecular dynamics simulations for a simplified MOF model to directly calculate free energy profiles of the particle to validate the slacking theory without any assumptions. The results confirmed the fundamental assumption made in our previous study that the deformation of the flexible motifs within the MOF particles occurs sequentially, which is a key factor contributing to the slacking phenomenon. The second part of the study focused on the relationship between the volume expansion ratio of MOFs and the degree of slacking. The relationship predicted by the theory was experimentally validated by comparing ELM-11, which exhibits 30% volume expansion, to another MOF with a mutually interpenetrating jungle-gym structure, which exhibits 10% volume expansion. These findings strengthened and generalized the understanding of the mechanism underlying the slacking of gate adsorption induced upon the application of external force, which could guide the fabrication of molded MOFs while maintaining a high adsorption efficiency for various industrial applications.

2.
Proc Natl Acad Sci U S A ; 120(31): e2305573120, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37487093

ABSTRACT

Flexible metal-organic frameworks (MOFs) exhibit an adsorption-induced structural transition known as "gate opening" or "breathing," resulting in an S-shaped adsorption isotherm. This unique feature of flexible MOFs offers significant advantages, such as a large working capacity, high selectivity, and intrinsic thermal management capability, positioning them as crucial candidates for revolutionizing adsorption separation processes. Therefore, the interest in the industrial applications of flexible MOFs is increasing, and the adsorption engineering for flexible MOFs is becoming important. However, despite the establishment of the theoretical background for adsorption-induced structural transitions, no theoretical equation is available to describe S-shaped adsorption isotherms of flexible MOFs. Researchers rely on various empirical equations for process simulations that can lead to unreliable outcomes or may overlook insights into improving material performance owing to parameters without physical meaning. In this study, we derive a theoretical equation based on statistical mechanics that could be a standard for the structural transition type adsorption isotherms, as the Langmuir equation represents type I isotherms. The versatility of the derived equation is shown through four examples of flexible MOFs that exhibit gate opening and breathing. The consistency of the formula with existing theories, including the osmotic free energy analysis and intrinsic thermal management capabilities, is also discussed. The developed theoretical equation may lead to more reliable and insightful outcomes in adsorption separation processes, further advancing the direction of industrial applications of flexible MOFs.

3.
ACS Appl Mater Interfaces ; 13(25): 30213-30223, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34143592

ABSTRACT

As flexible metal-organic frameworks (MOFs) and their gate adsorption behaviors are increasingly expected to be used in gas storage and separation systems, evaluating their performance by considering their usage patterns in actual processes is becoming increasingly important. Herein, we show that the shaping of the elastic layer-structured MOF-11 (ELM-11; [Cu(BF4)2(4,4'-bipyridine)2]) into pellet forms using polymer binders smears its stepwise uptake associated with the CO2 gate adsorption. This is a critical problem because the superior adsorption properties of flexible MOFs are highly dependent on the sharpness of the step. Free energy analysis by molecular simulations revealed that the slacking of the gate adsorption is natural from a thermodynamic point of view. In other words, the external force exerted by the polymer binders, which prevents the expansion of MOF particles upon the gate opening, changes the free energy landscape of the system. This causes the flexible motifs within the MOF particles to undergo a structural transition at slightly different pressures from each other. The force profile dependence of the slacking phenomenon on both adsorption and desorption isotherms was also investigated. It was revealed that controlling the force profile applied to MOF particles is important to mold MOF pellets that satisfy the robustness and sharpness of the gate adsorption. Finally, we examined the coating of pellets to verify the relationship between the force profile and the degree of slacking and discussed possible strategies to improve the sharpness of the gate adsorption on MOF pellets considering the revealed mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL
...