Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Ecology ; 103(5): e3637, 2022 05.
Article in English | MEDLINE | ID: mdl-35060624

ABSTRACT

Diet analysis integrates a wide variety of visual, chemical, and biological identification of prey. Samples are often treated as compositional data, where each prey is analyzed as a continuous percentage of the total. However, analyzing compositional data results in analytical challenges, for example, highly parameterized models or prior transformation of data. Here, we present a novel approximation involving a Tweedie generalized linear model (GLM). We first review how this approximation emerges from considering predator foraging as a thinned and marked point process (with marks representing prey species and individual prey size). This derivation can motivate future theoretical and applied developments. We then provide a practical tutorial for the Tweedie GLM using new package mvtweedie that extends capabilities of widely used packages in R (mgcv and ggplot2) by transforming output to calculate prey compositions. We demonstrate this approach and software using two examples. Tufted Puffins (Fratercula cirrhata) provisioning their chicks on a colony in the northern Gulf of Alaska show decadal prey switching among sand lance and prowfish (1980-2000) and then Pacific herring and capelin (2000-2020), while wolves (Canis lupus ligoni) in southeast Alaska forage on mountain goats and marmots in northern uplands and marine mammals in seaward island coastlines.


Subject(s)
Charadriiformes , Wolves , Animals , Diet , Fishes , Linear Models , Predatory Behavior
2.
Sci Rep ; 11(1): 6235, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33737519

ABSTRACT

Some of the longest and most comprehensive marine ecosystem monitoring programs were established in the Gulf of Alaska following the environmental disaster of the Exxon Valdez oil spill over 30 years ago. These monitoring programs have been successful in assessing recovery from oil spill impacts, and their continuation decades later has now provided an unparalleled assessment of ecosystem responses to another newly emerging global threat, marine heatwaves. The 2014-2016 northeast Pacific marine heatwave (PMH) in the Gulf of Alaska was the longest lasting heatwave globally over the past decade, with some cooling, but also continued warm conditions through 2019. Our analysis of 187 time series from primary production to commercial fisheries and nearshore intertidal to offshore oceanic domains demonstrate abrupt changes across trophic levels, with many responses persisting up to at least 5 years after the onset of the heatwave. Furthermore, our suite of metrics showed novel community-level groupings relative to at least a decade prior to the heatwave. Given anticipated increases in marine heatwaves under current climate projections, it remains uncertain when or if the Gulf of Alaska ecosystem will return to a pre-PMH state.

3.
Glob Chang Biol ; 27(9): 1859-1878, 2021 05.
Article in English | MEDLINE | ID: mdl-33577102

ABSTRACT

During the Pacific marine heatwave of 2014-2016, abundance and quality of several key forage fish species in the Gulf of Alaska were simultaneously reduced throughout the system. Capelin (Mallotus catervarius), sand lance (Ammodytes personatus), and herring (Clupea pallasii) populations were at historically low levels, and within this community abrupt declines in portfolio effects identify trophic instability at the onset of the heatwave. Although compensatory changes in age structure, size, growth or energy content of forage fish were observed to varying degrees among all these forage fish, none were able to fully mitigate adverse impacts of the heatwave, which likely included both top-down and bottom-up forcing. Notably, changes to the demographic structure of forage fish suggested size-selective removals typical of top-down regulation. At the same time, changes in zooplankton communities may have driven bottom-up regulation as copepod community structure shifted toward smaller, warm water species, and euphausiid biomass was reduced owing to the loss of cold-water species. Mediated by these impacts on the forage fish community, an unprecedented disruption of the normal pelagic food web was signaled by higher trophic level disruptions during 2015-2016, when seabirds, marine mammals, and groundfish experienced shifts in distribution, mass mortalities, and reproductive failures. Unlike decadal-scale variability underlying ecosystem regime shifts, the heatwave appeared to temporarily overwhelm the ability of the forage fish community to buffer against changes imposed by warm water anomalies, thereby eliminating any ecological advantages that may have accrued from having a suite of coexisting forage species with differing life-history compensations.


Subject(s)
Ecosystem , Fishes , Alaska , Animals , Food Chain , Zooplankton
4.
Harmful Algae ; 92: 101730, 2020 02.
Article in English | MEDLINE | ID: mdl-32113594

ABSTRACT

Elevated seawater temperatures are linked to the development of harmful algal blooms (HABs), which pose a growing threat to marine birds and other wildlife. During late 2015 and early 2016, a massive die-off of Common Murres (Uria aalge; hereafter, murres) was observed in the Gulf of Alaska coincident with a strong marine heat wave. Previous studies have documented illness and death among seabirds resulting from exposure to the HAB neurotoxins saxitoxin (STX) and domoic acid (DA). Given the unusual mortality event, corresponding warm water anomalies, and recent detection of STX and DA throughout coastal Alaskan waters, HABs were identified as a possible factor of concern. To evaluate whether algal toxins may have contributed to murre deaths, we tested for STX and DA in a suite of tissues obtained from beach-cast murre carcasses associated with the die-off as well as from apparently healthy murres and Black-legged Kittiwakes (Rissa tridactyla; hereafter, kittiwakes) sampled in the preceding and following summers. We also tested forage fish and marine invertebrates collected in the Gulf of Alaska in 2015-2017 to evaluate potential sources of HAB toxin exposure for seabirds. Saxitoxin was present in multiple tissue types of both die-off (36.4 %) and healthy (41.7 %) murres and healthy kittiwakes (54.2 %). Among birds, we detected the highest concentrations of STX in liver tissues (range 1.4-10.8 µg 100 g-1) of die-off murres. Saxitoxin was relatively common in forage fish (20.3 %) and invertebrates (53.8 %). No established toxicity limits currently exist for seabirds, but concentrations of STX in birds and forage fish in our study were lower than values reported from most other bird die-offs in which STX intoxication was causally linked. We detected low concentrations of DA in a single bird sample and in 33.3 % of invertebrates and 4.0 % of forage fish samples. Although these results do not support the hypothesis that acute exposure to STX or DA was a primary factor in the 2015-2016 mortality event, additional information about the sensitivity of murres to these toxins is needed before we can discount their potential role in the die-off. The widespread occurrence of STX in seabirds, forage fish, and invertebrates in the Gulf of Alaska indicates that algal toxins should be considered in future assessments of seabird health, especially given the potential for greater occurrence of HABs in the future.


Subject(s)
Charadriiformes , Saxitoxin , Alaska , Animals , Birds , Kainic Acid/analogs & derivatives
5.
PLoS One ; 15(1): e0226087, 2020.
Article in English | MEDLINE | ID: mdl-31940310

ABSTRACT

About 62,000 dead or dying common murres (Uria aalge), the trophically dominant fish-eating seabird of the North Pacific, washed ashore between summer 2015 and spring 2016 on beaches from California to Alaska. Most birds were severely emaciated and, so far, no evidence for anything other than starvation was found to explain this mass mortality. Three-quarters of murres were found in the Gulf of Alaska and the remainder along the West Coast. Studies show that only a fraction of birds that die at sea typically wash ashore, and we estimate that total mortality approached 1 million birds. About two-thirds of murres killed were adults, a substantial blow to breeding populations. Additionally, 22 complete reproductive failures were observed at multiple colonies region-wide during (2015) and after (2016-2017) the mass mortality event. Die-offs and breeding failures occur sporadically in murres, but the magnitude, duration and spatial extent of this die-off, associated with multi-colony and multi-year reproductive failures, is unprecedented and astonishing. These events co-occurred with the most powerful marine heatwave on record that persisted through 2014-2016 and created an enormous volume of ocean water (the "Blob") from California to Alaska with temperatures that exceeded average by 2-3 standard deviations. Other studies indicate that this prolonged heatwave reduced phytoplankton biomass and restructured zooplankton communities in favor of lower-calorie species, while it simultaneously increased metabolically driven food demands of ectothermic forage fish. In response, forage fish quality and quantity diminished. Similarly, large ectothermic groundfish were thought to have increased their demand for forage fish, resulting in greater top-predator demands for diminished forage fish resources. We hypothesize that these bottom-up and top-down forces created an "ectothermic vise" on forage species leading to their system-wide scarcity and resulting in mass mortality of murres and many other fish, bird and mammal species in the region during 2014-2017.


Subject(s)
Charadriiformes/physiology , Climate , Hot Temperature , Mortality , Reproduction , Animals , Pacific Ocean
6.
Glob Chang Biol ; 24(1): 387-398, 2018 01.
Article in English | MEDLINE | ID: mdl-28833910

ABSTRACT

Nearly half of the freshwater discharge into the Gulf of Alaska originates from landscapes draining glacier runoff, but the influence of the influx of riverine organic matter on the trophodynamics of coastal marine food webs is not well understood. We quantified the ecological impact of riverine organic matter subsidies to glacier-marine habitats by developing a multi-trophic level Bayesian three-isotope mixing model. We utilized large gradients in stable (δ13 C, δ15 N, δ2 H) and radiogenic (Δ14 C) isotopes that trace riverine and marine organic matter sources as they are passed from lower to higher trophic levels in glacial-marine habitats. We also compared isotope ratios between glacial-marine and more oceanic habitats. Based on isotopic measurements of potential baseline sources, ambient water and tissues of marine consumers, estimates of the riverine organic matter source contribution to upper trophic-level species including fish and seabirds ranged from 12% to 44%. Variability in resource use among similar taxa corresponded to variation in species distribution and life histories. For example, riverine organic matter assimilation by the glacier-nesting seabirds Kittlitz's murrelet (Brachyramphus brevirostris) was greater than that of the forest-nesting marbled murrelet (B. marmoratus). The particulate and dissolved organic carbon in glacial runoff and near surface coastal waters was aged (12100-1500 years BP 14 C-age) but dissolved inorganic carbon and biota in coastal waters were young (530 years BP 14 C-age to modern). Thus terrestrial-derived subsidies in marine food webs were primarily composed of young organic matter sources released from glacier ecosystems and their surrounding watersheds. Stable isotope compositions also revealed a divergence in food web structure between glacial-marine and oceanic sites. This work demonstrates linkages between terrestrial and marine ecosystems, and facilitates a greater understanding of how climate-driven changes in freshwater runoff have the potential to alter food web dynamics within coastal marine ecosystems in Alaska.


Subject(s)
Food Chain , Ice Cover , Oceans and Seas , Alaska , Animals , Bayes Theorem , Biota , Carbon Isotopes/analysis , Climate Change , Fishes , Forests , Fresh Water , Nitrogen Isotopes/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...