Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 9: 1418, 2018.
Article in English | MEDLINE | ID: mdl-29977242

ABSTRACT

Disruption of skin homeostasis can lead to inflammatory cutaneous diseases resulting from the dysregulated interplay between epithelial keratinocytes and immune cells. Interleukin (IL)-22 signaling through membrane-bound IL-22 receptor 1 (IL-22R1) is crucial to maintain cutaneous epithelial integrity, and its malfunction mediates deleterious skin inflammation. While IL-22 binding protein (IL-22BP) binds IL-22 to suppress IL-22 signaling, how IL-22BP controls epithelial functionality to prevent skin inflammation remains unclear. Here, we describe the pivotal role of IL-22BP in mediating epithelial autoregulation of IL-22 signaling for the control of cutaneous pathogenesis. Unlike prominent expression of IL-22BP in dendritic cells in lymphoid tissues, epidermal keratinocytes predominantly expressed IL-22BP in the skin in the steady state, whereas its expression decreased during the development of psoriatic inflammation. Deficiency in IL-22BP aggravates psoriasiform dermatitis, accompanied by abnormal hyperproliferation of keratinocytes and excessive cutaneous inflammation as well as enhanced dermal infiltration of granulocytes and γδT cells. Furthermore, IL-22BP abrogates the functional alternations of keratinocytes upon stimulation with IL-22. On the other hand, treatment with IL-22BP alleviates the severity of cutaneous pathology and inflammation in psoriatic mice. Thus, the fine-tuning of IL-22 signaling through autocrine IL-22BP production in keratinocytes is instrumental in the maintenance of skin homeostasis.

2.
J Allergy Clin Immunol ; 141(6): 2156-2167.e9, 2018 06.
Article in English | MEDLINE | ID: mdl-29477579

ABSTRACT

BACKGROUND: Exposure to dietary constituents through the mucosal surface of the gastrointestinal tract generates oral tolerance that prevents deleterious T cell-mediated immunity. Although oral tolerance is an active process that involves emergence of CD4+ forkhead box p3 (Foxp3)+ regulatory T (Treg) cells in gut-associated lymphoid tissues (GALTs) for suppression of effector T (Teff) cells, how antigen-presenting cells initiate this process remains unclear. OBJECTIVE: We sought to determine the role of plasmacytoid dendritic cells (pDCs), which are known as unconventional antigen-presenting cells, in establishment of oral tolerance. METHODS: GALT-associated pDCs in wild-type mice were examined for their ability to induce differentiation of CD4+ Teff cells and CD4+Foxp3+ Treg cells in vitro. Wild-type and pDC-ablated mice were fed oral antigen to compare their intestinal generation of CD4+Foxp3+ Treg cells and induction of oral tolerance to protect against Teff cell-mediated allergic inflammation. RESULTS: GALT-associated pDCs preferentially generate CD4+Foxp3+ Treg cells rather than CD4+ Teff cells, and such generation requires an autocrine loop of TGF-ß for its robust production. A deficiency of pDCs abrogates antigen-specific de novo generation of CD4+Foxp3+ Treg cells occurring in GALT after antigenic feeding. Furthermore, the absence of pDCs impairs development of oral tolerance, which ameliorates the progression of delayed-type hypersensitivity and systemic anaphylaxis, as well as allergic asthma, accompanied by an enhanced antigen-specific CD4+ Teff cell response and antibody production. CONCLUSION: pDCs are required for establishing oral tolerance to prevent undesirable allergic responses, and they might serve a key role in maintaining gastrointestinal immune homeostasis.


Subject(s)
Dendritic Cells/immunology , Immune Tolerance/immunology , Immunity, Mucosal/immunology , Intestinal Mucosa/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Lymphoid Tissue/immunology , Mice
3.
Biochem Biophys Rep ; 9: 29-35, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28955985

ABSTRACT

Basophils, which are the rarest granulocytes, play crucial roles in protective immunity against parasites and development of allergic disorders. Although immunoglobulin (Ig)E-dependent responses via receptor for IgE (FcεRI) in basophils have been extensively studied, little is known about cell surface molecules that are selectively expressed on this cell subset to utilize the elimination in vivo through treatment with monoclonal antibody (mAb). Since CD200 receptor 3 (CD200R3) was exclusively expressed on basophils and mast cells (MCs) using a microarray screening, we have generated anti-CD200R3 mAb recognizing CD200R3A. In this study we examined the expression pattern of CD200R3A on leukocytes, and the influence of the elimination of basophils by anti-CD200R3A mAb on allergic responses. Flow cytometric analysis showed that CD200R3A was primarily expressed on basophils and MCs, but not on other leukocytes. Administration with anti-CD200R3A mAb led to the prominent specific depletion of tissue-resident and circulating basophils, but not MCs. Furthermore, in vivo depletion of basophils ameliorated IgE-mediated systemic and local anaphylaxis. Taken together, these findings suggest that CD200R3A is reliable cell surface marker for basophils in vivo, and targeting this unique molecule with mAb for the elimination of basophils may serve as a novel therapeutic strategy in ameliorating the allergic diseases.

4.
Methods Mol Biol ; 1423: 291-308, 2016.
Article in English | MEDLINE | ID: mdl-27142025

ABSTRACT

Dendritic cells (DCs) are essential antigen-presenting cells (APCs) that consist of heterogeneous subsets, mainly classified as conventional DCs (cDCs) and plasmacytoid DCs (pDCs). CD205, an endocytic type I C-type lectin-like molecule that belongs to the mannose receptor family, is mainly expressed on CD8α(+) cDCs. However, it is unclear how CD205(+) cDCs control immune responses in vivo. To evaluate the contribution of CD205(+) cDCs to the immune system, we engineered knock-in (KI) mice that express the diphtheria toxin receptor (DTR) under the control of the Cd205 gene, which allows the selective conditional ablation of CD205(+) cDCs in vivo. Conditional ablation of CD205(+) cDCs impaired the antigen-specific priming of CD8(+) T cells to generate cytotoxic T lymphocytes (CTLs) mediated through cross presentation of soluble antigen. Upon microbial infection, CD205(+) cDCs contributed to the cross priming of CD8(+) T cells for generating antibacterial CTLs to efficiently eliminate pathogens. Here, we provide a protocol for the generation of bone marrow WT/CD205-DT chimeric mice, depletion of CD205(+) DCs and assessment of depletion efficiency, and protocols for in vivo cross presentation assay, CTL generation assay, and antibacterial immunity assay.


Subject(s)
Antigens, CD/genetics , Bone Marrow Cells/cytology , Dendritic Cells/cytology , Heparin-binding EGF-like Growth Factor/metabolism , Lectins, C-Type/genetics , Minor Histocompatibility Antigens/genetics , Receptors, Cell Surface/genetics , Animals , Antigens, CD/metabolism , Bone Marrow Cells/immunology , CD8-Positive T-Lymphocytes/immunology , Cross-Priming , Dendritic Cells/immunology , Gene Knock-In Techniques , Heparin-binding EGF-like Growth Factor/genetics , Lectins, C-Type/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Minor Histocompatibility Antigens/metabolism , Promoter Regions, Genetic , Receptors, Cell Surface/metabolism , T-Lymphocytes, Cytotoxic/immunology
5.
Nat Commun ; 7: 11273, 2016 Apr 12.
Article in English | MEDLINE | ID: mdl-27068492

ABSTRACT

Dendritic cells (DCs) comprise several subsets that are critically involved in the initiation and regulation of immunity. Clec4A4/DC immunoreceptor 2 (DCIR2) is a C-type lectin receptor (CLR) exclusively expressed on CD8α(-) conventional DCs (cDCs). However, how Clec4A4 controls immune responses through regulation of the function of CD8α(-) cDCs remains unclear. Here we show that Clec4A4 is a regulatory receptor for the activation of CD8α(-) cDCs that impairs inflammation and T-cell immunity. Clec4a4(-/-)CD8α(-) cDCs show enhanced cytokine production and T-cell priming following Toll-like receptor (TLR)-mediated activation. Furthermore, Clec4a4(-/-) mice exhibit TLR-mediated hyperinflammation. On antigenic immunization, Clec4a4(-/-) mice show not only augmented T-cell responses but also progressive autoimmune pathogenesis. Conversely, Clec4a4(-/-) mice exhibit resistance to microbial infection, accompanied by enhanced T-cell responses against microbes. Thus, our findings highlight roles of Clec4A4 in regulation of the function of CD8α(-) cDCs for control of the magnitude and quality of immune response.


Subject(s)
Dendritic Cells/immunology , Immunity, Cellular , Inflammation/pathology , Receptors, Cell Surface/metabolism , Receptors, Immunologic/metabolism , T-Lymphocytes/immunology , Animals , Bacterial Infections/immunology , Bacterial Infections/prevention & control , CD4-Positive T-Lymphocytes/immunology , CD8 Antigens/metabolism , CD8-Positive T-Lymphocytes/immunology , Cytokines/biosynthesis , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Epitopes/immunology , Host-Pathogen Interactions/immunology , Ligands , Mice, Inbred C57BL , Polysaccharides/metabolism , Protein Binding , Protein Structure, Tertiary , Receptors, Cell Surface/chemistry , Receptors, Immunologic/chemistry , Retroviridae/metabolism , Toll-Like Receptors/metabolism , Transduction, Genetic
6.
Sci Rep ; 6: 24477, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-27075414

ABSTRACT

Endosomal toll-like receptor (TLR)-mediated detection of viral nucleic acids (NAs) and production of type I interferon (IFN-I) are key elements of antiviral defense, while inappropriate recognition of self NAs with the induction of IFN-I responses is linked to autoimmunity such as psoriasis and systemic lupus erythematosus. Plasmacytoid dendritic cells (pDCs) are cells specialized in robust IFN-I secretion by the engagement of endosomal TLRs, and predominantly express sialic acid-binding Ig-like lectin (Siglec)-H. However, how pDCs control endosomal TLR-mediated immune responses that cause autoimmunity remains unclear. Here we show a critical role of pDCs in TLR7-mediated autoimmunity using gene-modified mice with impaired expression of Siglec-H and selective ablation of pDCs. pDCs were shown to be indispensable for the induction of systemic inflammation and effector T-cell responses triggered by TLR7 ligand. pDCs aggravated psoriasiform dermatitis mediated through the hyperproliferation of keratinocytes and enhanced dermal infiltration of granulocytes and γδ T cells. Furthermore, pDCs promoted the production of anti-self NA antibodies and glomerulonephritis in lupus-like disease by activating inflammatory monocytes. On the other hand, Siglec-H regulated the TLR7-mediated activation of pDCs. Thus, our findings reveal that pDCs provide an essential link between TLR7-mediated innate and adaptive immunity for the initiation of IFN-I-associated autoimmune inflammation.


Subject(s)
Adaptive Immunity , Autoimmune Diseases/physiopathology , Dendritic Cells/immunology , Immunity, Innate , Inflammation/physiopathology , Toll-Like Receptor 7/metabolism , Animals , Dermatitis/physiopathology , Disease Models, Animal , Glomerulonephritis/physiopathology , Mice , Psoriasis/physiopathology , Skin/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...