Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Biosci Bioeng ; 101(1): 9-12, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16503284

ABSTRACT

In order to study the feasibility of commercial-scale L-lactic acid production by Rhizopus sp. MK-96-1196 using large scale airlift bioreactors (ALBs), a scale-up study from 0.003 m3 to 5 m3 ALB was carried out using oxygen transfer rate (OTR) as the scale-up criterion. Enhanced L-lactic acid production was achieved at OTRs higher than 0.28 (g-O2/l/h) irrespective of the scale of the bioreactor in question: in the range of 0.003 m3 to 5 m3, more than 90 g/lL-lactic acid was produced with a yield of approximately 80%, based on the initial glucose concentration. In future research, we plan to design an ALB greater than 3000 m3 (working volume: 2000 m3) for further studies on the production of L-lactic acid in large quantities.


Subject(s)
Bioreactors/microbiology , Fermentation , Industrial Microbiology/methods , Lactic Acid/biosynthesis , Rhizopus/metabolism , Oxygen/pharmacology , Rhizopus/drug effects , Rhizopus/growth & development
2.
J Biosci Bioeng ; 97(1): 19-23, 2004.
Article in English | MEDLINE | ID: mdl-16233583

ABSTRACT

By a monospore isolation technique, Rhizopus sp. MK-96-1 was selected from colonies of Rhizopus sp. MK-96, which was isolated from the soil sample collected in Fujieda, Japan, and used as a parent strain. By the ammonia-concentration-gradient agar plate technique after mutation using N-methyl-N'-nitro-N-nitrosoguanidine (NTG) method, a mutant strain designated Rhizopus sp. MK-96-1196 producing more than 90 g/l L-lactic acid under pH control using liquid ammonia in an airlift bioreactor was successfully isolated. Compared with the parent strain, this mutant strain produced about twofold the amount of L-lactic acid in half fermentation time under the same culture conditions. Ammonium L-lactate was recovered and purified as free L-lactic acid via n-butyl L-lactate. The ammonia used for pH control in the fermentation broth was recovered as liquid ammonia during the recovery and purification process and subsequently reused for the next fermentation. Thus, we have developed a new highly purified L-lactic acid production process without producing recalcitrant wastes, e.g., CaSO4 (gypsum).

3.
J Biosci Bioeng ; 97(3): 153-7, 2004.
Article in English | MEDLINE | ID: mdl-16233608

ABSTRACT

The optimum temperature, initial pH, amount of added enzyme and substrate (corncob) for the hydrolysis of corncob by Acremonium cellulase were 35 degrees C, 4.5, 10 u/g-corncob and 100 g/l, respectively. Under the optimum conditions, more than 55 g/l of reducing sugars were hydrolyzed from 100 g/l of corncob to 34 g/l of glucose and 12 g/l of xylose based on dried corncob. More than 25 g/l of L-lactic acid was produced from this enzymatic hydrolyzate and less than 5 g/l of xylose remained in the 3-l airlift bioreactor. The production of L-lactic acid by simultaneous saccharification and fermentation (SSF) was also carried out in the 3-l airlift bioreactor using Acremonium thermophilus (cellulose-producer) and Rhizopus sp. MK-96-1196 (lactic acid-producer). More than 24 g/l of L-lactic acid was produced from 100 g/l of untreated raw corncob.

4.
J Biosci Bioeng ; 96(1): 65-9, 2003.
Article in English | MEDLINE | ID: mdl-16233484

ABSTRACT

We determined the optimum culture conditions such as inoculum size, initial starch concentration, pH during the fermentation and aeration rate for L-lactic acid production by Rhizopus sp. MK-96-1196 in a 3-l airlift bioreactor. More than 90 g/l of L-lactic acid was produced from only partially enzymatically hydrolyzed corn starch with a production rate of 2.6 g/l/h and a product yield of 87% based on the starch consumed under the optimum conditions in the 3-l airlift bioreactor. Scale-up from the 3-l to a 100-l airlift bioreactor for L-lactic acid fermentation was carried out using V(s)(cm/s) as a scale-up criterion. The production rates and yields of L-lactic acid in both bioreactors appeared to be fairly well correlated with k(L)a (1/h).

SELECTION OF CITATIONS
SEARCH DETAIL