Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 12(18): 4400-4406, 2021 May 13.
Article in English | MEDLINE | ID: mdl-33944567

ABSTRACT

We apply high-temperature oxide melt solution calorimetry to assess the thermodynamic properties of the material Li1+xAlxTi2-x(PO4)3, which has been broadly recognized as one of the best Li-ion-conducting solid electrolytes of the NASICON family. The experimental results reveal large exothermic enthalpies of formation from binary oxides (ΔHf,ox°) and elements (ΔHf,el°) for all compositions in the range 0 ≤ x ≤ 0.5. This indicates substantial stability of Li1+xAlxTi2-x(PO4)3, driven by thermodynamics and not just kinetics, during long-term battery operation. The stability increases with increasing Al3+ content. Furthermore, the dependence of the formation enthalpy on the Al3+ content shows a change in behavior at x = 0.3, a composition near which the Li+ conductivity reaches the highest values. The strong correlation among thermodynamic stability, ionic transport, and clustering is a general phenomenon in ionic conductors that is independent of the crystal structure as well as the type of charge carrier. Therefore, the thermodynamic results can serve as guidelines for the selection of compositions with potentially the highest Li+ conductivity among different NASICON-type series with variable dopant contents.

2.
Front Chem ; 7: 197, 2019.
Article in English | MEDLINE | ID: mdl-31001521

ABSTRACT

Lanthanide phosphates (LnPO 4) are considered as a potential nuclear waste form for immobilization of Pu and minor actinides (Np, Am, and Cm). In that respect, in the recent years we have applied advanced atomistic simulation methods to investigate various properties of these materials on the atomic scale. In particular, we computed several structural, thermochemical, thermodynamic and radiation damage related parameters. From a theoretical point of view, these materials turn out to be excellent systems for testing quantum mechanics-based computational methods for strongly correlated electronic systems. On the other hand, by conducting joint atomistic modeling and experimental research, we have been able to obtain enhanced understanding of the properties of lanthanide phosphates. Here we discuss joint initiatives directed at understanding the thermodynamically driven long-term performance of these materials, including long-term stability of solid solutions with actinides and studies of structural incorporation of f elements into these materials. In particular, we discuss the maximum load of Pu into the lanthanide-phosphate monazites. We also address the importance of our results for applications of lanthanide-phosphates beyond nuclear waste applications, in particular the monazite-xenotime systems in geothermometry. For this we have derived a state-of-the-art model of monazite-xenotime solubilities. Last but not least, we discuss the advantage of usage of atomistic simulations and the modern computational facilities for understanding of behavior of nuclear waste-related materials.

3.
Inorg Chem ; 57(11): 6252-6265, 2018 Jun 04.
Article in English | MEDLINE | ID: mdl-29762025

ABSTRACT

This study investigates the incorporation of the minor actinide curium (Cm3+) in a series of synthetic La1- xGd xPO4 ( x = 0, 0.24, 0.54, 0.83, 1) monazite and rhabdophane solid-solutions. To obtain information on the incorporation process on the molecular scale and to understand the distribution of the dopant in the synthetic phosphate phases, combined time-resolved laser fluorescence spectroscopy and X-ray absorption fine structure spectroscopy investigations were conducted and complemented with ab initio atomistic simulations. We found that Cm3+ is incorporated in the monazite endmembers (LaPO4 and GdPO4) on one specific, highly ordered lattice site. The intermediate solid-solutions, however, display increasing disorder around the Cm3+ dopant as a result of random variations in nearest neighbor distances. In hydrated rhabdophane, and especially its La-rich solid-solutions, Cm3+ is preferentially incorporated on nonhydrated lattice sites. This site occupancy is not in agreement with the hydrated rhabdophane structure, where two-thirds of the lattice sites are associated with water of hydration (LnPO4·0.67H2O), implying that structural substitution reactions cannot be predicted based on the structure of the host matrix only.

4.
J Colloid Interface Sci ; 483: 139-145, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27552422

ABSTRACT

In the present study, we have investigated the luminescent properties of Eu(3+) as a dopant in a series of synthetic lanthanide phosphates from the monazite group. Systematic trends in the spectroscopic properties of Eu(3+) depending on the size of the host cation and the dopant to ligand distance have been observed. Our results show that the increasing match between host and dopant radii when going from Eu(3+)-doped LaPO4 toward the smaller GdPO4 monazite decreases both the full width at half maximum of the Eu(3+) excitation peak, as well as the (7)F2/(7)F1 emission band intensity ratio. The decreasing Ln⋯O bond distance within the LnPO4 series causes a systematic bathochromic shift of the Eu(3+) excitation peak, showing a linear dependence of both the host cation size and the Ln⋯O distance. The linear relationship can be used to predict the energy band gap for Eu(3+)-doped monazites for which no Eu(3+) luminescent data is available. Finally, mechanisms for metal-metal energy transfer between host and dopant lanthanides have been explored based on recorded luminescence lifetime data. Luminescence lifetime data for Eu(3+) incorporated in the various monazite hosts clearly indicated that the energy band gap between the guest ion emission transition and the host ion absorption transition can be correlated to the degree of quenching observed in these materials with otherwise identical geometries and chemistries.

SELECTION OF CITATIONS
SEARCH DETAIL
...