Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Life Sci ; 351: 122807, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38852800

ABSTRACT

AIMS: Differentiation-inducing factor-1 (DIF-1) is a polyketide produced by Dictyostelium discoideum that inhibits growth and migration, while promoting the differentiation of Dictyostelium stalk cells through unknown mechanisms. DIF-1 localizes in stalk mitochondria. In addition to its effect on Dictyostelium, DIF-1 also inhibits growth and migration, and induces mitochondrial fission followed by mitophagy in mammalian cells, at least in part by activating AMP-activated protein kinase (AMPK). In a previous study, we found that DIF-1 binds to mitochondrial malate dehydrogenase (MDH2) and inhibits its activity in HeLa cells. In the present study, we investigated whether MDH2 serves as a pharmacological target of DIF-1 in mammalian cells. MAIN METHODS: To examine the enzymatic activity of MDH, mitochondrial morphology, and molecular mechanisms of DIF-1 action, we conducted an MDH reverse reaction assay, immunofluorescence staining, western blotting, and RNA interference using mammalian cells such as human umbilical vein endothelial cells, human cervical cancer cells, mouse endothelial cells, and mouse breast cancer cells. KEY FINDINGS: DIF-1 inhibited mitochondrial but not cytoplasmic MDH activity. Similar to DIF-1, LW6, an authentic MDH2 inhibitor, induced phosphorylation of AMPK, resulting in the phosphorylation of acetyl-CoA carboxylase (ACC) and the dephosphorylation of p70 S6 kinase with approximately the same potency. DIF-1 and LW6 induced mitochondrial fission. Furthermore, MDH2 knockdown using siRNA reproduced the DIF-1 action on the AMPK signaling and mitochondrial morphology. Conversely, an AMPK inhibitor prevented DIF-1-induced mitochondrial fission. SIGNIFICANCE: We propose that MDH2 is a mammalian target of DIF-1 for the activation of AMPK and induction of mitochondrial fission.


Subject(s)
AMP-Activated Protein Kinases , Malate Dehydrogenase , Mitochondria , Mitochondrial Dynamics , Humans , AMP-Activated Protein Kinases/metabolism , Mitochondrial Dynamics/drug effects , Mitochondrial Dynamics/physiology , Malate Dehydrogenase/metabolism , Mitochondria/metabolism , HeLa Cells , Animals , Hexanones/pharmacology , Hexanones/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Enzyme Activation , Hydrocarbons, Chlorinated
2.
J Pharmacol Sci ; 154(2): 97-107, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38246733

ABSTRACT

In our previous study, we reported that 2, 5-dimethyl-celecoxib (DM-C), a derivative of celecoxib, prevents cardiac remodeling in different mouse models of heart failure, including myocardial infarction (MI). The inflammatory response after MI affects the progression of cardiac remodeling, wherein the immune cells, mainly macrophages, play crucial roles. Therefore, we evaluated the effect of DM-C on macrophages in a cryoinjury-induced myocardial infarction (CMI) mouse model. We observed that DM-C attenuated the deterioration of left ventricular ejection fraction and cardiac fibrosis 14 d after CMI. Gene expression of pro-inflammatory cytokines at the infarct site was reduced by DM-C treatment. Analysis of macrophage surface antigens revealed that DM-C induced transient accumulation of macrophages at the infarct site without affecting their polarization. In vitro experiments using peritoneal monocytes/macrophages revealed that DM-C did not directly increase the phagocytic ability of the macrophages but increased their number, thereby upregulating the clearance capacity. Moreover, DM-C rapidly excluded the cells expressing necrotic cell marker from the infarct site. These results suggested that DM-C enhanced the clearance capacity of macrophages by transiently increasing their number at the infarct site, and terminated the escape from the inflammatory phase earlier, thereby suppressing excessive cardiac remodeling and ameliorating cardiac dysfunction.


Subject(s)
Myocardial Infarction , Pyrazoles , Sulfonamides , Ventricular Remodeling , Animals , Mice , Celecoxib/pharmacology , Celecoxib/therapeutic use , Stroke Volume , Ventricular Function, Left , Myocardial Infarction/drug therapy , Macrophages , Disease Models, Animal
3.
Life Sci ; 335: 122278, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37981227

ABSTRACT

AIMS: Differentiation-inducing factor-1 (DIF-1), a compound in Dictyostelium discoideum, exhibits anti-cancer effects by inhibiting cell proliferation and motility of various mammalian cancer cells in vitro and in vivo. In addition, DIF-1 suppresses lung colony formation in a mouse model, thus impeding cancer metastasis. However, the precise mechanism underlying its anti-metastatic effect remains unclear. In the present study, we aim to elucidate this mechanism by investigating the adhesion of circulating tumor cells to blood vessels using in vitro and in vivo systems. MAIN METHODS: Melanoma cells (1.0 × 105 cells) were injected into the tail vein of 8-week-old male C57BL/6 mice after administration of DIF-1 (300 mg/kg per day) and/or lipopolysaccharide (LPS: 2.5 mg/kg per day). To investigate cell adhesion and molecular mechanisms, cell adhesion assay, western blotting, immunofluorescence staining, and flow cytometry were performed. KEY FINDINGS: Intragastric administration of DIF-1 suppressed lung colony formation. DIF-1 also substantially inhibited the adhesion of cancer cells to human umbilical vein endothelial cells. Notably, DIF-1 did not affect the expression level of adhesion-related proteins in cancer cells, but it did decrease the expression of vascular cell adhesion molecule-1 (VCAM-1) in human umbilical vein endothelial cells by suppressing its mRNA-to-protein translation through inhibition of mTORC1-p70 S6 kinase signaling. SIGNIFICANCE: DIF-1 reduced tumor cell adhesion to blood vessels by inhibiting mTORC1-S6K signaling and decreasing the expression of adhesion molecule VCAM-1 on vascular endothelial cells. These findings highlight the potential of DIF-1 as a promising compound for the development of anti-cancer drugs with anti-metastatic properties.


Subject(s)
Dictyostelium , Vascular Cell Adhesion Molecule-1 , Mice , Animals , Male , Humans , Vascular Cell Adhesion Molecule-1/metabolism , Lipopolysaccharides/pharmacology , Dictyostelium/metabolism , Mice, Inbred C57BL , Proteins , Human Umbilical Vein Endothelial Cells/metabolism , Mechanistic Target of Rapamycin Complex 1 , Cell Differentiation , Cell Adhesion , Mammals/metabolism
4.
Biochem Pharmacol ; 214: 115663, 2023 08.
Article in English | MEDLINE | ID: mdl-37336252

ABSTRACT

Fibrosis occurs in all organs and tissues except the brain, and its progression leads to dysfunction of affected organs. Fibrosis-induced organ dysfunction results from the loss of elasticity, strength, and functionality of tissues due to the extracellular matrix secreted by myofibroblasts that express smooth muscle-type actin as a marker. Myofibroblasts, which play a major role in fibrosis, were once thought to originate exclusively from activated fibroblasts; however, it is now clear that myofibroblasts are diverse in origin, from epithelial cells, endothelial cells, adipocytes, macrophages, and other cells. Fibrosis of vital organs, such as the heart, lungs, kidneys, and liver, is a serious chronic disease that ultimately leads to death. Currently, anti-cancer drugs have made remarkable progress, as evidenced by the development of many molecular-targeted drugs, and are making a significant contribution to improving the prognosis of cancer treatment. However, the development of anti-fibrotic agents, which also play an important role in prognosis, has lagged. In this review, the current knowledge regarding myofibroblasts is summarized, with particular attention given to their origin and transdifferentiation signaling pathways (e.g., TGF-ß, Wnt/ß-catenin, YAP/TAZ and AMPK signaling pathways). The development of new small molecule anti-fibrotic agents and the repositioning of existing drugs targeting myofibroblast transdifferentiation are discussed.


Subject(s)
Cell Transdifferentiation , Myofibroblasts , Humans , Myofibroblasts/metabolism , Antifibrotic Agents , Endothelial Cells , Fibroblasts/metabolism , Fibrosis
5.
J Pharmacol Sci ; 152(1): 39-49, 2023 May.
Article in English | MEDLINE | ID: mdl-37059490

ABSTRACT

Differentiation-inducing factor 1 (DIF-1) is a morphogen produced by Dictyostelium discoideum that inhibits the proliferation and migration of both D. discoideum and most mammalian cells. Herein, we assessed the effect of DIF-1 on mitochondria, because DIF-3, which is similar to DIF-1, reportedly localizes in the mitochondria when added exogenously, however the significance of this localization remains unclear. Cofilin is an actin depolymerization factor that is activated by dephosphorylation at Ser-3. By regulating the actin cytoskeleton, cofilin induces mitochondrial fission, the first step in mitophagy. Here, we report that DIF-1 activates cofilin and induces mitochondrial fission and mitophagy mainly using human umbilical vein endothelial cells (HUVECs). AMP-activated kinase (AMPK), a downstream molecule of DIF-1 signaling, is required for cofilin activation. Pyridoxal phosphatase (PDXP)-known to directly dephosphorylate cofilin-is also required for the effect of DIF-1 on cofilin, indicating that DIF-1 activates cofilin through AMPK and PDXP. Cofilin knockdown inhibits mitochondrial fission and decreases mitofusin 2 (Mfn2) protein levels, a hallmark of mitophagy. Taken together, these results indicate that cofilin is required for DIF-1- induced mitochondrial fission and mitophagy.


Subject(s)
Dictyostelium , Hexanones , Animals , Humans , AMP-Activated Protein Kinases , Actin Depolymerizing Factors/metabolism , Actin Depolymerizing Factors/pharmacology , Mitochondrial Dynamics , Dictyostelium/metabolism , Endothelial Cells/metabolism , Cell Differentiation , Phosphoric Monoester Hydrolases , Pyridoxal/pharmacology , Hexanones/pharmacology , Mammals/metabolism
6.
Int Immunopharmacol ; 117: 109913, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36812674

ABSTRACT

The tumor microenvironment (TME), largely composed of tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs), plays a key role in cancer progression. A small molecule, differentiation-inducing factor-1 (DIF-1) secreted by Dictyostelium discoideum, is known to exhibit anticancer activity; however, its effect on the TME remains unknown. In this study, we investigated the effect of DIF-1 on the TME using mouse triple-negative breast cancer 4T1-GFP cells, mouse macrophage RAW 264.7 cells, and mouse primary dermal fibroblasts (DFBs). Polarization of 4T1 cell-conditioned medium-induced macrophage into TAMs was not affected by DIF-1. In contrast, DIF-1 decreased 4T1 cell co-culturing-induced C-X-C motif chemokine ligand 1 (CXCL1), CXCL5, and CXCL7 expression in DFBs and suppressed DFB differentiation into CAF-like cells. Additionally, DIF-1 inhibited C-X-C motif chemokine receptor 2 (CXCR2) expression in 4T1 cells. Immunohistochemical analyses of tumor tissue samples excised from breast cancer-bearing mice showed that DIF-1 did not affect the number of CD206-positive TAMs; however, it decreased the number of α-smooth muscle actin-positive CAFs and CXCR2 expression. These results indicated that the anticancer effect of DIF-1 was partially attributed to the inhibition of CXCLs/CXCR2 axis-mediated communication between breast cancer cells and CAFs.


Subject(s)
Cancer-Associated Fibroblasts , Dictyostelium , Neoplasms , Animals , Mice , Cancer-Associated Fibroblasts/metabolism , Neoplasms/metabolism , Macrophages/metabolism , Fibroblasts , Communication , Tumor Microenvironment , Cell Line, Tumor
7.
Hypertens Res ; 45(12): 1869-1881, 2022 12.
Article in English | MEDLINE | ID: mdl-36171325

ABSTRACT

Renin-angiotensin system inhibitors have been shown to prevent cancer metastasis in experimental models, but there are limited data in clinical studies. We aimed to explore whether renin-angiotensin system inhibitors administered during the period of cancer resection can influence the subsequent development of metastasis by analyzing multiple individual types of primary cancers. A total of 4927 patients who had undergone resection of primary cancers at Kyushu University Hospital from 2009 to 2014 were enrolled and categorized into 3 groups based on the use of antihypertensive drugs: renin-angiotensin system inhibitors, other drugs, and none. Cumulative incidence functions of metastasis, treating death as a competing risk, were calculated, and the difference was examined among groups by Gray's test. Fine and Gray's model was employed to evaluate multivariate-adjusted hazards of incidental metastasis. In the multivariate-adjusted analysis, patients with skin and renal cancers showed statistically higher risks of metastasis with the use of renin-angiotensin system inhibitors (hazard ratio [95% confidence interval], 5.81 [1.07-31.57] and 4.24 [1.71-10.53], respectively). Regarding pancreatic cancer, patients treated with antihypertensive drugs other than renin-angiotensin system inhibitors had a significantly increased risk of metastasis (hazard ratio [95% confidence interval], 3.31 [1.43-7.69]). Future larger studies are needed to ascertain whether renin-angiotensin system inhibitors can increase the risk of metastasis in skin and renal cancers, focusing on specific tissue types and potential factors associated with renin-angiotensin system inhibitor use.


Subject(s)
Kidney Neoplasms , Pancreatic Neoplasms , Humans , Antihypertensive Agents/therapeutic use , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin Receptor Antagonists/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Renin-Angiotensin System , Retrospective Studies , Electronic Health Records , Enzyme Inhibitors/pharmacology , Pancreatic Neoplasms/chemically induced , Pancreatic Neoplasms/drug therapy , Kidney Neoplasms/drug therapy
8.
J Clin Periodontol ; 49(8): 782-798, 2022 08.
Article in English | MEDLINE | ID: mdl-35713219

ABSTRACT

AIM: Autologous bone grafts consolidate faster than bone graft substitutes (BGSs) but resorb over time, which compromises implant support. We hypothesized that differences in consolidation rates affected the mechanical properties of grafts and implant stability, and tested whether a pro-osteogenic protein, liposomal WNT3A (L-WNT3A), could accelerate graft consolidation. MATERIALS AND METHODS: A transgenic mouse model of sinus augmentation with immunohistochemistry, enzymatic assays, and histology were used to quantitatively evaluate the osteogenic properties of autografts and BGSs. Composite and finite element modelling compared changes in the mechanical properties of grafts during healing until consolidation, and secondary implant stability following remodelling activities. BGSs were combined with L-WNT3A and tested for its osteogenic potential. RESULTS: Compared with autografts, BGSs were bioinert and lacked osteoprogenitor cells. While in autografted sinuses, new bone arose evenly from all living autograft particles, new bone around BGSs solely initiated at the sinus floor, from the internal maxillary periosteum. WNT treatment of BGSs resulted in significantly higher expression levels of pro-osteogenic proteins (Osterix, Collagen I, alkaline phosphatase) and lower levels of bone-resorbing activity (tartrate-resistant acid phosphatase activity); together, these features culminated in faster new bone formation, comparable to that of an autograft. CONCLUSIONS: WNT-treated BGSs supported faster consolidation, and because BGSs typically resist resorption, their use may be superior to autografts for sinus augmentation.


Subject(s)
Bone Substitutes , Sinus Floor Augmentation , Animals , Autografts/transplantation , Bone Transplantation/methods , Dental Implantation, Endosseous/methods , Maxillary Sinus/surgery , Mice , Sinus Floor Augmentation/methods , Wnt Proteins
9.
Eur J Pharmacol ; 909: 174415, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34375673

ABSTRACT

Angiotensin II (Ang II) reportedly facilitates primary tumor growth and distal hematogenous metastasis formation in various murine intravenous metastasis models. However, it is unclear whether Ang II accelerates the initial processes of metastasis formation that begins in primary tumors surrounded by tumor microenvironment. We examined the effects of Ang II on primary tumors and lung metastasis lesions using a murine spontaneous metastasis model, in which triple negative breast cancer 4T1 cells constitutively expressing luciferase (4T1-Luc cells) were injected into the mammary fat pad of BALB/c mice. Subcutaneous injection of Ang II significantly accelerated primary tumor growth and lung metastasis formation. Ang II increased the protein expression levels of c-Myc, cyclin D1, fibronectin, vimentin, αSMA and Snail, and the treatment with the Ang II type 1 receptor blocker valsartan significantly suppressed the Ang II-induced increases of fibronectin and vimentin. Valsartan also significantly reduced lung metastatic lesions. However, Ang II did not have significant effects on 4T1-Luc cells including the proliferation, migration, invasion, or the expressions of proteins related to cell proliferation and epithelial-to-mesenchymal transition. In contrast, when 4T1-Luc cells were co-cultured with dermal fibroblasts, Ang II significantly accelerated cell migration and increased the expressions of fibronectin, vimentin, αSMA and Snail in 4T1-Luc cells. And moreover, Ang II significantly increased the mRNA expression of IL-6 in fibroblasts co-cultured with 4T1-Luc cells. These results suggested that Ang II accelerates surrounding fibroblasts by soluble factors such as IL-6 to promote epithelial-to-mesenchymal transition, which result in the initiation of cancer metastasis.


Subject(s)
Angiotensin II/metabolism , Cancer-Associated Fibroblasts/pathology , Lung Neoplasms/secondary , Triple Negative Breast Neoplasms/pathology , Animals , Cancer-Associated Fibroblasts/metabolism , Cell Line, Tumor , Disease Models, Animal , Epithelial-Mesenchymal Transition , Female , Humans , Lung/pathology , Mammary Glands, Animal/pathology , Mice , Tumor Microenvironment
10.
Oncogene ; 40(37): 5579-5589, 2021 09.
Article in English | MEDLINE | ID: mdl-34304250

ABSTRACT

We have previously reported that the differentiation-inducing factor-1 (DIF-1), a compound identified in Dictyostelium discoideum, suppresses the growth of MCF-7 breast cancer cells by inactivating p70 ribosomal protein S6 kinase (p70S6K). Therefore, we first examined whether the same mechanism operates in other breast cancer cells, especially triple-negative breast cancer (TNBC), the most aggressive and refractory phenotype of breast cancer. We also investigated the mechanism by which DIF-1 suppresses p70S6K by focusing on the AMPK-mTORC1 system. We found that DIF-1 induces phosphorylation of AMPK and Raptor and dephosphorylation of p70S6K in multiple TNBC cell lines. Next, we examined whether AMPK-mediated inhibition of p70S6K leads to the suppression of proliferation and migration/infiltration of TNBC cells. DIF-1 significantly reduced the expression levels of cyclin D1 by suppressing the translation of STAT3 and strongly suppressed the expression levels of Snail, which led to the suppression of growth and motility, respectively. Finally, we investigated whether DIF-1 exerts anticancer effects on TNBC in vivo. Intragastric administration of DIF-1 suppressed tumor growth and spontaneous lung metastasis of 4T1-Luc cells injected into the mammary fat pad of BALB/c mice. DIF-1 is expected to lead to the development of anticancer drugs, including anti-TNBC, by a novel mechanism.


Subject(s)
Mechanistic Target of Rapamycin Complex 1 , Triple Negative Breast Neoplasms , AMP-Activated Protein Kinases , Animals , Humans , Mice , Ribosomal Protein S6 Kinases, 70-kDa , Signal Transduction
11.
J Hypertens ; 39(5): 892-903, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33252422

ABSTRACT

BACKGROUND: We reported that 2,5-dimethylcelecoxib (DM-celecoxib), a celecoxib derivative that is unable to inhibit cyclooxygenase-2, prevented cardiac remodeling induced by sarcomeric gene mutation, left ventricular pressure overload, or ß-adrenergic receptor stimulation. This effect seemed to be mediated by the inhibition of the canonical Wnt/ß-catenin signaling pathway, which has been suggested to play a key role in the development of chronic kidney disease and chronic heart failure. METHOD: We investigated the effect of DM-celecoxib on cardiac remodeling and kidney injury in hypertension model mice induced by angiotensin II infusion in the absence or presence of high-salt load. RESULTS: DM-celecoxib prevented cardiac remodeling and markedly reduced urinary albumin excretion without altering blood pressure in those mice. Moreover, DM-celecoxib prevented podocyte injury, glomerulosclerosis, and interstitial fibrosis in the kidney of mice loaded with angiotensin II and high-salt load. DM-celecoxib reduced the phosphorylation level of Akt and activated glycogen synthase kinase-3, which led to the suppression of the Wnt/ß-catenin signal in the heart and kidney. DM-celecoxib also reduced the expression level of snail, a key transcription factor for the epithelial-mesenchymal transition and of which gene is a target of the Wnt/ß-catenin signal. CONCLUSION: Results of the current study suggested that DM-celecoxib could be beneficial for patients with hypertensive heart and kidney diseases.


Subject(s)
Angiotensin II , Hypertension , Animals , Humans , Hypertension/chemically induced , Kidney , Mice , Pyrazoles , Sulfonamides
12.
Calcif Tissue Int ; 108(2): 240-251, 2021 02.
Article in English | MEDLINE | ID: mdl-32990765

ABSTRACT

Wnt signaling maintains homeostasis in the bone marrow cavity: if Wnt signaling is inhibited then bone volume and density would decline. In this study, we identified a population of Wnt-responsive cells as osteoprogenitor in the intact trabecular bone region, which were responsible for bone development and turnover. If an implant was placed into the long bone, this Wnt-responsive population and their progeny contributed to osseointegration. We employed Axin2CreCreERT2/+;R26mTmG/+ transgenic mouse strain in which Axin2-positive, Wnt-responsive cells, and their progeny are permanently labeled by GFP upon exposure to tamoxifen. Each mouse received femoral implants placed into a site prepared solely by drilling, and a single-dose liposomal WNT3A protein was used in the treatment group. A lineage tracing strategy design allowed us to identify cells actively expressing Axin2 in response to Wnt signaling pathway. These tools demonstrated that Wnt-responsive cells and their progeny comprise a quiescent population residing in the trabecular region. In response to an implant placed, this population becomes mitotically active: cells migrated into the peri-implant region, up-regulated the expression of osteogenic proteins. Ultimately, those cells gave rise to osteoblasts that produced significantly more new bone in the peri-implant region. Wnt-responsive cells directly contributed to implant osseointegration. Using a liposomal WNT3A protein therapeutic, we showed that a single application at the time of implant placed was sufficient to accelerate osseointegration. The Wnt-responsive cell population in trabecular bone, activated by injury, ultimately contributes to implant osseointegration. Liposomal WNT3A protein therapeutic accelerates implant osseointegration in the long bone.


Subject(s)
Osseointegration , Osteogenesis , Prostheses and Implants , Wnt3A Protein/therapeutic use , Animals , Bone-Implant Interface , Femur , Mice , Osteoblasts , Wnt Signaling Pathway
13.
Bone Joint Res ; 9(2): 60-70, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32435456

ABSTRACT

AIMS: Surgeons and most engineers believe that bone compaction improves implant primary stability without causing undue damage to the bone itself. In this study, we developed a murine distal femoral implant model and tested this dogma. METHODS: Each mouse received two femoral implants, one placed into a site prepared by drilling and the other into the contralateral site prepared by drilling followed by stepwise condensation. RESULTS: Condensation significantly increased peri-implant bone density but it also produced higher strains at the interface between the bone and implant, which led to significantly more bone microdamage. Despite increased peri-implant bone density, condensation did not improve implant primary stability as measured by an in vivo lateral stability test. Ultimately, the condensed bone underwent resorption, which delayed the onset of new bone formation around the implant. CONCLUSION: Collectively, these multiscale analyses demonstrate that condensation does not positively contribute to implant stability or to new peri-implant bone formation.Cite this article: Bone Joint Res. 2020;9(2):60-70.

14.
J Periodontol ; 91(12): 1653-1663, 2020 12.
Article in English | MEDLINE | ID: mdl-32347546

ABSTRACT

BACKGROUND: in an effort to identify and validate which animal models are best suited for dental implant research, we used multiscale analyses to examine tooth extraction wound healing in a well-accepted model, the Yucatan mini pig and a more controversial model, the laboratory mouse. METHODS: first molar extractions were performed in adult, skeletally mature mini pigs and mice. Alveolar bone repair was evaluated at early, intermediate and late timepoints using quantitative micro-computed tomographic (µCT) imaging, histology, molecular, and cellular assays. Vital dye labeling was employed to quantify mineral apposition rates (MAR) in both species. RESULTS: Despite a 3000-fold difference in weight, the relative proportions of the mini pig and murine maxillae and are equivalent. Quantitative µCT demonstrated that within the posterior alveolar bone, the volume of mineralized bone was lower in mini pig than in the mice; during healing, however, the bone volume fraction was equivalent. The histologic appearance of healing sites was also comparable, and alkaline phosphatase (ALP) and tartrate resistant acid phosphatase (TRAP) staining showed a similar temporal and spatial distribution of bone remodeling. Vital dye labeling indicated equivalent MAR between the species. The absolute duration of the healing period differed: in mice, complete healing was accomplished in ∼21 days. In mini pigs, the same process took four times longer. CONCLUSIONS: Extraction socket healing is histologically equivalent between mini pigs and mice, supporting the hypothesis that the underlying mechanisms of alveolar bone healing are conserved among species.


Subject(s)
Alveolar Process , Tooth Socket , Alveolar Process/diagnostic imaging , Alveolar Process/surgery , Animals , Mice , Swine , Swine, Miniature , Tooth Extraction , Tooth Socket/diagnostic imaging , Tooth Socket/surgery , Wound Healing
16.
Cancer Sci ; 110(12): 3761-3772, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31553107

ABSTRACT

Differentiation-inducing factor-1 (DIF-1) has been reported to inhibit the proliferation of various mammalian cells by unknown means, although some possible mechanisms of its action have been proposed, including the activation of glycogen synthase kinase-3 (GSK-3). Here, we report an alternative mechanism underlying the action of DIF-1 in human breast cancer cell line MCF-7, on which the effects of DIF-1 have not been examined previously. Intragastric administration of DIF-1 reduced the tumor growth from MCF-7 cells injected into a mammary fat pad of nude mice, without causing adverse effects. In cultured MCF-7, DIF-1 arrested the cell cycle in G0 /G1 phase and suppressed cyclin D1 expression, consistent with our previous results obtained in other cell species. However, DIF-1 did not inhibit the phosphorylation of GSK-3. Investigating an alternative mechanism for the reduction of cyclin D1, we found that DIF-1 reduced the protein levels of signal transducer and activator of transcription 3 (STAT3). The STAT3 inhibitor S3I-201 suppressed cyclin D1 expression and cell proliferation and the overexpression of STAT3 enhanced cyclin D1 expression and accelerated proliferation. Differentiation-inducing factor-1 did not reduce STAT3 mRNA or reduce STAT3 protein in the presence of cycloheximide, suggesting that DIF-1 inhibited STAT3 protein synthesis. Seeking its mechanism, we revealed that DIF-1 inhibited the activation of 70 kDa and/or 85 kDa ribosomal protein S6 kinase (p70S6K /p85S6K ). Inhibition of p70S6K /p85S6K by rapamycin also reduced the expressions of STAT3 and cyclin D1. Therefore, DIF-1 suppresses MCF-7 proliferation by inhibiting p70S6K /p85S6K activity and STAT3 protein synthesis followed by reduction of cyclin D1 expression.


Subject(s)
Cyclin D1/antagonists & inhibitors , Hexanones/pharmacology , Hydrocarbons, Chlorinated/pharmacology , Ribosomal Protein S6 Kinases/physiology , STAT3 Transcription Factor/antagonists & inhibitors , Animals , Cell Proliferation/drug effects , Cyclin D1/analysis , Female , Glycogen Synthase Kinase 3/metabolism , Humans , MCF-7 Cells , Mice , Mice, Inbred BALB C , Phosphorylation , Ribosomal Protein S6 Kinases, 70-kDa , STAT3 Transcription Factor/biosynthesis
17.
Biochem Pharmacol ; 168: 82-90, 2019 10.
Article in English | MEDLINE | ID: mdl-31229551

ABSTRACT

We previously reported that 2,5-dimethylcelecoxib (DM-celecoxib), a celecoxib derivative that is unable to inhibit cyclooxygenase-2, prevented cardiac remodeling by activating glycogen synthase kinase-3 (GSK-3) and prolonged the lifespan of heart failure mice with genetic dilated cardiomyopathy or transverse aortic constriction-induced left ventricular hypertrophy. However, it remained unclear how DM-celecoxib regulated structure and function of cardiomyocytes and cardiac fibroblasts involved in cardiac remodeling. In the present study, therefore, we investigated the effect of DM-celecoxib on isoprenaline-induced cardiomyocyte hypertrophy and cardiac fibroblast activation, because DM-celecoxib prevented isoprenaline-induced cardiac remodeling in vivo. DM-celecoxib suppressed isoprenaline-induced neonatal rat cardiomyocyte hypertrophy by the inhibition of Akt phosphorylation resulting in the activation of GSK-3 and the inhibition of ß-catenin and mammalian target of rapamycin (mTOR). DM-celecoxib also suppressed the proliferation and the production of matrix metalloproteinase-2 and fibronectin of rat cardiac fibroblasts. Moreover, we found that phosphatase and tensin homolog on chromosome 10 (PTEN) could be a molecule to mediate the effect of DM-celecoxib on Akt. These results suggest that DM-celecoxib directly improves the structure and function of cardiomyocytes and cardiac fibroblasts and that this compound could be clinically useful for the treatment of ß-adrenergic receptor-mediated maladaptive cardiac remodeling.


Subject(s)
Cardiomegaly/chemically induced , Cardiomegaly/drug therapy , Fibroblasts/drug effects , Glycogen Synthase Kinase 3/metabolism , Isoproterenol/pharmacology , Myocytes, Cardiac/drug effects , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Pyrazoles/therapeutic use , Sulfonamides/therapeutic use , Animals , Animals, Newborn , Disease Models, Animal , Fibroblasts/metabolism , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Pyrazoles/pharmacology , Rats , Rats, Sprague-Dawley , Sulfonamides/pharmacology , Ventricular Remodeling/drug effects
18.
J Pharmacol Sci ; 139(3): 209-214, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30773300

ABSTRACT

The aim of this study was to investigate the contribution of gene polymorphisms, in combination with habitual caffeine consumption, to the effect of caffeine intake on hemodynamic and psychoactive parameters. A double-blind, prospective study was conducted with 201 healthy volunteers randomly allocated 2:1 to the caffeinated group (150 mL decaffeinated coffee with additional 200 mg caffeine) or decaffeinated group (150 mL decaffeinated coffee). We measured the changes in blood pressure (BP) and calculation speed upon coffee intake, stratifying with gene polymorphisms, e.g., those in adenosine A2A receptor (ADORA2A) and cytochrome P450 (CYP) 1A2, and daily caffeine consumption (≤90 mg/day and >90 mg/day). Overall, caffeine intake independently increased BP and calculation speed (p-values < 0.05), irrespective of the polymorphisms. In stratified analysis, a statistical significance within the caffeinated group was observed for the change in systolic BP in the stratum of CYP1A2 polymorphism with daily caffeine consumption ≤90 mg/day: change in systolic BP in the CYP1A2 rs762551 CC group (mean ± SD = 11.8 ± 5.9) was higher than that in the AA/CA group (4.1 ± 5.5). Gene polymorphisms may limitedly modify the effect of caffeine intake on hemodynamic parameters in combination with habitual caffeine consumption.


Subject(s)
Blood Pressure/drug effects , Caffeine/pharmacology , Cytochrome P-450 CYP1A2/genetics , Heart Rate/drug effects , Coffee , Double-Blind Method , Female , Humans , Male , Mathematics , Polymorphism, Genetic , Prospective Studies , Receptor, Adenosine A2A/genetics , Young Adult
19.
Biochem Pharmacol ; 165: 207-213, 2019 07.
Article in English | MEDLINE | ID: mdl-30776323

ABSTRACT

Rheumatoid arthritis (RA) is a chronic inflammatory joint disease that causes swelling, bone erosion, and joint disorder. Patients with RA therefore suffer from pain and physiological disability, and have a decreased quality of life. During the progression of RA, many different types of cells and inflammatory factors influence each other with an important role. A better understanding of the pathology of RA should therefore lead to the development of effective anti-rheumatoid drugs, such as the anti-TNFα antibody. Glycogen synthase kinase-3 (GSK-3) is a cytoplasmic serine/threonine protein kinase that is involved in a large number of key cellular processes and is dysregulated in a wide variety of diseases, including inflammation and osteoporosis. The accumulated evidence has suggested that GSK-3 could be involved in multiple steps in the progression of RA. In the present review, the mechanisms of the pathogenesis of RA are summarized, and recent developments and potential new drugs targeting GSK-3 are discussed.


Subject(s)
Antirheumatic Agents/pharmacology , Glycogen Synthase Kinase 3/antagonists & inhibitors , Animals , Bone Regeneration/physiology , Glycogen Synthase Kinase 3/physiology , Humans , Inflammation/etiology , Osteoclasts/physiology , Osteogenesis/physiology , Th17 Cells/immunology
20.
J Clin Med ; 8(2)2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30717291

ABSTRACT

The preservation of bone viability at an osteotomy site is a critical variable for subsequent implant osseointegration. Recent biomechanical studies evaluating the consequences of site preparation led us to rethink the design of bone-cutting drills, especially those intended for implant site preparation. We present here a novel drill design that is designed to efficiently cut bone at a very low rotational velocity, obviating the need for irrigation as a coolant. The low-speed cutting produces little heat and, consequently, osteocyte viability is maintained. The lack of irrigation, coupled with the unique design of the cutting flutes, channels into the osteotomy autologous bone chips and osseous coagulum that have inherent osteogenic potential. Collectively, these features result in robust, new bone formation at rates significantly faster than those observed with conventional drilling protocols. These preclinical data have practical implications for the clinical preparation of osteotomies and alveolar bone reconstructive surgeries.

SELECTION OF CITATIONS
SEARCH DETAIL
...