Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys J ; 96(7): 2696-708, 2009 Apr 08.
Article in English | MEDLINE | ID: mdl-19348752

ABSTRACT

Cholesterol-rich, liquid-ordered (L(o)) domains are believed to be biologically relevant, and yet detailed knowledge about them, especially in live cells under physiological conditions, is elusive. Although these domains have been observed in model membranes, understanding cholesterol-lipid interactions at the molecular level, under controlled lipid mixing, remains a challenge. Further, although there are a number of fluorescent lipid analogs that partition into liquid-disordered (L(d)) domains, the number of such analogs with a high affinity for biologically relevant L(o) domains is limited. Here, we use a new Bodipy-labeled cholesterol (Bdp-Chol) derivative to investigate membrane fluidity, lipid order, and partitioning in various lipid phases in giant unilamellar vesicles (GUVs) as a model system. GUVs were prepared from mixtures of various molar fractions of dioleoylphosphatidylcholine, cholesterol, and egg sphingomyelin. The L(d) phase domains were also labeled with 1,1'-didodecyl-3,3,3',3'-tetramethylindocarbocyanine (DiI-C(12)) for comparison. Two-photon fluorescence lifetime and anisotropy imaging of Bdp-Chol are sensitive to lipid phase domains in GUVs. The fluorescence lifetime of Bdp-Chol in liquid-disordered, single-phase GUVs is 5.50 +/- 0.08 ns, compared with 4.1 +/- 0.4 ns in the presence of DiI-C(12). The observed reduction of fluorescence lifetime is attributed to Förster resonance energy transfer between Bdp-Chol (a donor) and DiI-C(12) (an acceptor) with an estimated efficiency of 0.25 and donor-acceptor distance of 2.6 +/- 0.2 nm. These results also indicate preferential partitioning (K(p) = 1.88) of Bdp-Chol into the L(o) phase. One-photon, time-resolved fluorescence anisotropy of Bdp-Chol decays as a triexponential in the lipid bilayer with an average rotational diffusion coefficient, lipid order parameter, and membrane fluidity that are sensitive to phase domains. The translational diffusion coefficient of Bdp-Chol, as measured using fluorescence correlation spectroscopy, is (7.4 +/- 0.3) x 10(-8) cm(2)/s and (5.0 +/- 0.2) x 10(-8) cm(2)/s in the L(d) and L(o) phases, respectively. Experimental translational/rotational diffusion coefficient ratios are compared with theoretical predictions using the hydrodynamic model (Saffman-Delbrück). The results suggest that Bdp-Chol is likely to form a complex with other lipid molecules during its macroscopic diffusion in GUV lipid bilayers at room temperature. Our integrated, multiscale results demonstrate the potential of this cholesterol analog for studying lipid-lipid interactions, lipid order, and membrane fluidity of biologically relevant L(o) domains.


Subject(s)
Boron Compounds/metabolism , Cholesterol/metabolism , Lipid Metabolism , Membrane Fluidity , Unilamellar Liposomes/metabolism , Diffusion , Fluorescence , Fluorescence Polarization , Fluorescence Resonance Energy Transfer , Lipid Bilayers/metabolism , Phosphatidylcholines/metabolism , Sphingomyelins/metabolism , Time Factors
2.
Phys Chem Chem Phys ; 8(39): 4517-29, 2006 Oct 21.
Article in English | MEDLINE | ID: mdl-17047749

ABSTRACT

Biomembranes are complex systems that regulate numerous biological processes. Lipid phases that constitute these membranes influence their properties and transport characteristics. Here, we demonstrate the potential of short-range dynamics imaging (excited-state lifetime, rotational diffusion, and order parameter) as a sensitive probe of lipid phases in giant unilamellar vesicles (GUVs). Liquid-disordered and gel phases were labeled with Bodipy-PC at room temperature. Two-photon fluorescence lifetime imaging microscopy of single-phase GUVs reveals more heterogeneity in fluorescence lifetimes of Bodipy in the gel phase (DPPC: 3.8+/-0.6 ns) as compared with the fluid phase (DOPC: 5.2+/-0.2 ns). The phase-specificity of excited-state lifetime of Bodipy-PC is attributed to the stacking of ordered lipid molecules that possibly enhances homo-FRET. Fluorescence polarization anisotropy imaging also reveals distinctive molecular order that is phase specific. The results are compared with DiI-C12-labeled fluid GUVs to investigate the sensitivity of our fluorescence dynamics assay to different lipid-marker interactions. Our results provide a molecular perspective of lipid phase dynamics and the nature of their microenvironments that will ultimately help our understanding of the structure-function relationship of biomembranes in vivo. Furthermore, these ultrafast excited-state dynamics will be used for molecular dynamics simulation of lipid-lipid, lipid-marker and lipid-protein interactions.


Subject(s)
Lipids/chemistry , Membranes/chemistry , Anisotropy , Biocompatible Materials/chemistry , Boron Compounds/chemistry , Chemistry, Physical/methods , Lipid Bilayers/chemistry , Membrane Fluidity , Membranes, Artificial , Microscopy, Confocal , Models, Statistical , Proteins/chemistry , Spectrometry, Fluorescence , Structure-Activity Relationship , Temperature
3.
Biomaterials ; 27(18): 3404-12, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16504286

ABSTRACT

Concentration-dependent, interfacial-shear rheology and interfacial tension of albumin, IgG, fibrinogen, and IgM adsorbed to the aqueous-buffer/air surface is interpreted in terms of a single viscoelastic layer for albumin but multi-layers for the larger proteins. Two-dimensional (2D) storage and loss moduli G(') and G(''), respectively, rise and fall as a function of bulk-solution concentration, signaling formation of a network of interacting protein molecules at the surface with viscoelastic properties. Over the same concentration range, interfacial spreading pressure Pi(LV) identical with gamma(lv)(o)-gamma(lv) rises to a sustained maximum Pi(LV)(max). Mixing as little as 25 w/v% albumin into IgG at fixed total protein concentration substantially reduces peak G('), strongly suggesting that albumin acts as rheological modifier by intercalating with adsorbed IgG molecules. By contrast to purified-protein solutions, serially diluted human blood serum shows no resolvable concentration-dependent G(')and G('').


Subject(s)
Blood Proteins/chemistry , Air , Buffers , Humans , Rheology , Surface Properties , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...