Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 5(24): 12984-90, 2013 Dec 26.
Article in English | MEDLINE | ID: mdl-24295275

ABSTRACT

Nanoparticle (NPs) film of copper hexacyanoferrate (CuHCF(III)) was developed for electrochemically cesium separation from wastewater. Different form the electro- or chemical deposited films, CuHCF(III) NPs were firstly covered with ferrocyanide anions, so that they can be well dispersed in water and formed ink. Then CuHCF(III) NPs can be uniformly coated by simple wet printing methods, so it is feasible to prepare NPs film of any sizes, or any patterns at low cost. This process provided a promising technology for preparing large scale electrodes for sequential removal of Cs from wastewater in the columns. Cs separation can be controlled by an electrically switched ion exchange (ESIX) system. Effect of temperatures, and ionic strength on Cs removal was investigated. Thermodynamics results showed that Cs adsorption process was exothermic in nature and favored at low temperature. Ionic strength study indicated the CuHCF(III) film can selectively separate Cs in wide ionic strength range from 1 × 10(-4) to 1 × 10(-1) M Na(+). XPS results demonstrated that the electrochemical oxidation-reduction of Fe (II/III) made contributions to Cs separation.


Subject(s)
Cesium/chemistry , Copper/chemistry , Nanoparticles/chemistry , Water Purification , Cesium/toxicity , Ferrocyanides/chemistry , Humans , Thermodynamics , Wastewater , Water Pollutants, Chemical
2.
Chem Commun (Camb) ; (3): 240-1, 2007 Jan 21.
Article in English | MEDLINE | ID: mdl-17299625

ABSTRACT

We here report the enhancement of a sonochemical effect (chemical reaction induced by ultrasound irradiation) by a Pt black catalyst; the sonochemical reduction of the highly stable U(VI) was demonstrated using this catalytic reaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...