Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Transplant ; 25(12): 2245-2257, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27480080

ABSTRACT

Liver fibrosis is characterized by excessive accumulation of extracellular matrix components in the liver parenchyma that distorts the normal architecture and hepatic function. Progressive fibrosis could end in the advanced stage known as cirrhosis, resulting in the need to resort to liver transplantation. Amniotic membrane (AM) has emerged as an innovative therapeutic approach for chronic liver diseases due to its anti-inflammatory, antiscarring, and wound-healing effects. We have recently shown that AM can be used as a patch on the liver surface at the same time of fibrosis induction, resulting in significantly reduced progression and severity of biliary fibrosis. Here we investigated the effects of human AM on the established rat model of liver fibrosis, induced by the bile duct ligation (BDL). We also explored the effect of AM on the expression of transforming growth factor-1 (TGF-1), the main profibrogenic factor in hepatic fibrosis, and the proinflammatory cytokines, tumor necrosis factor- (TNF-), interleukin-6 (IL-6), and anti-inflammatory cytokine IL-10. Two weeks after BDL, the liver was covered with a fragment of AM or left untreated. Six weeks later, the fibrosis was first assessed by the semiquantitative Knodell and the METAVIR scoring systems and, thereafter, by CellProfiler digital image analysis to quantify the area occupied by collagen deposition, ductular reactions (DRs), activated myofibroblasts, and TGF-1. The hepatic cytokines were determined by ELISA. AM-treated rats showed a significantly lower score compared to the control BDL rats (2.50.9 vs. 3.50.3, respectively; p0.05). The collagen deposition, DRs, number of activated myofibroblasts, and TGF-1 were all reduced to about 50% of levels observed in untreated BDL rats. These findings suggest that AM, when applied as a patch onto the liver surface, is useful for treating well-established cholestatic fibrosis, and the mechanism was partly by means of downregulating the profibrotic factor TGF-1 and IL-6.


Subject(s)
Amnion/transplantation , Bile Duct Diseases/surgery , Fibrosis/surgery , Amnion/metabolism , Animals , Bile Duct Diseases/metabolism , Bile Ducts/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Fibrosis/metabolism , Humans , Immunohistochemistry , Interleukin-10/metabolism , Interleukin-6/metabolism , Liver/metabolism , Liver Cirrhosis/metabolism , Liver Cirrhosis/surgery , Liver Diseases/metabolism , Liver Diseases/surgery , Male , Rats , Rats, Wistar , Transforming Growth Factor beta1/metabolism , Tumor Necrosis Factor-alpha/metabolism
2.
Analyst ; 134(11): 2361-70, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19838427

ABSTRACT

The diagnosis of thyroid pathologies is usually made by cytologic analysis of the fine needle aspiration (FNA) material. However, this procedure has a low sensitivity at times, presenting a variation of 2-37%. The application of optical spectroscopy in the characterization of alterations could result in the development of a minimally invasive and non-destructive method for the diagnosis of thyroid diseases. Thus, the objective of this work was to study the biochemical alterations of tissues and hormones (T3 and T4) of the thyroid gland by means of molecular vibrations probed by FT-Raman spectroscopy. Through the discriminative linear analysis of the Raman spectra of the tissue, it was possible to establish (in percentages) the correct classification index among the groups: goitre adjacent tissue, goitre nodular region, follicular adenoma, follicular carcinoma and papillary carcinoma. As a result of the comparison between the groups goitre adjacent tissue versus goitre nodular region, an index of 58.3% of correct classification was obtained; this percentage was considered low, and it was not possible to distinguish the Raman spectra of these groups. Between goitre (nodular region and adjacent tissue) versus papillary carcinoma, the index of correct classification was 64.9%, which was considered good. A relevant result was obtained in the analysis of the benign tissues (goitre and follicular adenoma) versus malignant tissues (papillary and follicular carcinomas), for which the index was 72.5% and considered good. It was also possible, by means of visual observation, to find similar vibrational modes in the hormones and pathologic tissues. In conclusion, some biochemical alterations, represented by the FT-Raman spectra, were identified that could possibly be used to classify histologic groups of the thyroid. However, more studies are necessary due to the difficulty in setting a standard for pathologic groups.


Subject(s)
Spectrum Analysis, Raman , Thyroid Gland/metabolism , Thyroid Gland/pathology , Cluster Analysis , Discriminant Analysis , Humans , Principal Component Analysis , Thyroid Diseases/diagnosis , Thyroid Diseases/metabolism , Thyroid Diseases/pathology , Thyroxine/metabolism , Triiodothyronine/metabolism , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...