Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cell Tissue Res ; 384(2): 449-463, 2021 May.
Article in English | MEDLINE | ID: mdl-33447878

ABSTRACT

Endothelial fenestrae are the transcellular pores existing on the capillary walls which are organized in clusters referred to as sieve plates. They are also divided by a diaphragm consisting of plasmalemma vesicle-associated protein (PLVAP). In this study, we examined the involvement of fibronectin signaling in the formation of fenestra and diaphragm in endothelial cells. Results showed that Itga5 and Itgb1 were expressed in PECAM1-positive endothelial cells isolated from the anterior lobe (AL) of the rat pituitary, and integrin α5 was localized at the fenestrated capillaries of the rat pituitary and cultured PECAM1-positive endothelial cells isolated from AL (CECAL). Inhibition of both integrin α5ß1 and FAK, a key molecule for integrin-microtubule signaling, respectively, by ATN-161 and FAK inhibitor 14, caused the delocalization of PLVAP at the sieve plates and depolymerization of microtubules in CECAL. Paclitaxel prevented the delocalization of PLVAP by the inhibition of integrin α5ß1. Microtubule depolymerization induced by colcemid also caused the delocalization of PLVAP. Treatment of CECAL with ATN-161 and colcemid caused PLVAP localization at the Golgi apparatus. The localization of PLVAP at the sieve plates was inhibited by BFA treatment in a time-dependent manner and spread diffusely to the cytoplasm. These results indicate that a constant supply of PLVAP proteins by the endomembrane system via the Golgi apparatus is essential for the localization of PLVAP at sieve plates. In conclusion, the endomembrane transport pathway from the Golgi apparatus to sieve plates requires microtubule cytoskeletons, which are regulated by fibronectin-integrin α5ß1 signaling.


Subject(s)
Endothelial Cells/metabolism , Fibronectins/metabolism , Integrins/metabolism , Membrane Proteins/metabolism , Microtubules/metabolism , Animals , Disease Models, Animal , Male , Rats , Signal Transduction
2.
Cell Tissue Res ; 383(2): 823-833, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32910242

ABSTRACT

Endothelial fenestrae are transcellular pores that pierce the capillary walls in endocrine glands such as the pituitary. The fenestrae are covered with a thin fibrous diaphragm consisting of the plasmalemma vesicle-associated protein (PLVAP) that clusters to form sieve plates. The basal surface of the vascular wall is lined by basement membrane (BM) composed of various extracellular matrices (ECMs). However, the relationship between the ECMs and the endothelial fenestrae is still unknown. In this study, we isolated fenestrated endothelial cells from the anterior lobe of the rat pituitary, using a dynabeads-labeled antibody against platelet endothelial cell adhesion molecule 1 (PECAM1). We then analyzed the gene expression levels of several endothelial marker genes and genes for integrin α subunits, which function as the receptors for ECMs, by real-time polymerase chain reaction (PCR). The results showed that the genes for the integrin α subunit, which binds to collagen IV, fibronectin, laminin-411, or laminin-511, were highly expressed. When the PECAM1-positive cells were cultured for 7 days on collagen IV-, fibronectin-, laminins-411-, or laminins-511-coated coverslips, the sieve plate structures equipped with probably functional fenestrae were maintained only when the cells were cultured on fibronectin. Additionally, real-time PCR analysis showed that the fibronectin coating was effective in maintaining the expression pattern of several endothelial marker genes that were preferentially expressed in the endothelial cells of the fenestrated capillaries. These results indicate that fibronectin functions as the principal factor in the maintenance of the sieve plate structures in the endothelial cells of the fenestrated capillary.


Subject(s)
Capillaries/metabolism , Endothelial Cells/metabolism , Fibronectins/metabolism , Animals , Biomarkers/metabolism , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Endothelial Cells/ultrastructure , Male , Membrane Proteins/metabolism , Pituitary Gland/cytology , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Rats, Wistar
3.
Med Mol Morphol ; 51(4): 217-226, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29869029

ABSTRACT

Acetylation of α-tubulin is a well-studied posttranscriptional modification, which is mostly catalyzed by α-tubulin N-acetyltransferase (ATAT1). ATAT1 possibly affects various cellular functions related with microtubules, such as intracellular transport, cell motility, cilia formation, and neuronal signaling. Here, we analyzed the subcellular localization of immunolabeled ATAT1 in human fibroblast KD cells through the cell cycle using confocal laser scanning microscopy. ATAT1 dramatically changed its localization through the cell cycle, depending on the mitotic phase. In interphase, immunolabeled ATAT1 was observed in centrioles, nuclei, and basal bodies if the cells projected primary cilia. ATAT1 was intensely detected as clusters in the nuclei in the G1-G2 phase. In telophase, ATAT1 colocalized with chromatids and spindle poles, and ultimately migrated to the daughter nucleus, newly synthesized centrioles, and midbody. The nucleolus is a core region of ribosomal RNA transcription, and the midbody is associated with severing and depolymerizing of microtubules in the stembody. The specific distributions of ATAT1 through the cell cycle suggest multiple functions of ATAT1, which could include acetylation of microtubules, RNA transcription activity, severing microtubules, and completion of cytokinesis.


Subject(s)
Acetyltransferases/metabolism , Cell Cycle , Fibroblasts/metabolism , Microtubule Proteins/metabolism , Microtubules/metabolism , Transcription, Genetic , Acetylation , Cell Line , Fibroblasts/physiology , Humans , Protein Transport
4.
Cell Tissue Res ; 370(1): 169-178, 2017 10.
Article in English | MEDLINE | ID: mdl-28687926

ABSTRACT

The production and secretion of adrenocorticotropin, a proopiomelanocortin (POMC)-derived hormone, by corticotrophs in the anterior pituitary, is regulated by corticotrophin-releasing hormone (CRH) and glucocorticoids. We have previously demonstrated that adrenalectomy induces α-tubulin N-acetyltransferase 1 (ATAT1) expression and α-tubulin acetylation in corticotrophs. However, the regulatory mechanism of ATAT1 expression and the function of acetylated microtubules in corticotrophs are unclear. Here, we analyze the effect of CRH or dexamethasone on Atat1 expression in the mouse corticotroph AtT20 cell line. The expression of Atat1 was increased by CRH and decreased by dexamethasone in AtT20 cells. We examined the effect of Atat1 knockdown on the expression of POMC-associated genes and the dexamethasone-induced nuclear translocation of glucocorticoid receptor (GR) by real-time polymerase chain reaction and Western blot analysis, respectively. Atat1 knockdown resulted in a significant increase in the expression of ACTH-producing genes and decreased the dexamethasone-induced nuclear translocation of GR accompanied with a reduction in α-tubulin acetylation. Atat1 overexpression resulted in a significant increase in α-tubulin acetylation and the dexamethasone-induced nuclear translocation of GR. These results suggest that the acetylated microtubules function as the rail-line for the transportation of GR into the nucleus. We conclude that ATAT1 finely tunes the cellular responses of corticotrophs to hormonal stimulation through an intracellular feedback circuit.


Subject(s)
Acetyltransferases/metabolism , Corticotrophs/physiology , Hemostasis , Hypothalamo-Hypophyseal System/physiology , Pituitary-Adrenal System/physiology , Acetylation , Acetyltransferases/genetics , Active Transport, Cell Nucleus , Adrenocorticotropic Hormone/genetics , Adrenocorticotropic Hormone/metabolism , Animals , Cell Line , Corticotrophs/cytology , Corticotropin-Releasing Hormone/metabolism , Gene Expression Regulation , Gene Knockdown Techniques , Mice , Microtubule Proteins , Pituitary-Adrenal System/cytology , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Receptors, Glucocorticoid/metabolism , Tubulin/metabolism
5.
Med Mol Morphol ; 50(2): 59-67, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27660208

ABSTRACT

S100ß-positive cells exist in the marginal cell layer (MCL) of the adenohypophysis and follicle structure in the parenchyma of anterior lobe (ALFS) in pituitary. They have multiple functions as phagocytes or cells that regulate hormone secretion. Majority of S100ß-positive cells in the adenohypophysis express sex determining region Y-box 2 protein (SOX2), a stem cell marker; therefore, S100ß/SOX2 double positive cells are also considered as one type of stem/progenitor cells. MCL and ALFS are consisting of morphologically two types of cells, i.e., multiciliated cells and non-ciliated cells. However, the relationship between the S100ß-positive cells and multiciliated cells in the pituitary is largely unknown. In the present study, we first immunohistochemically verified the feature of multiciliated cells in MCL and ALFS. We then examined the expression patterns of FOXJ1, an essential expression factor for multiciliated cell-differentiation, and SOX2 in the S100ß-positive multiciliated cells by in situ hybridization and immunohistochemistry. We identified anew the S100ß/SOX2/FOXJ1 triple positive multiciliated cells, and revealed that they were dispersed throughout the MCL and ALFS. These results indicate that the MCL and ALFS are consisting of morphologically and functionally distinct two types of cells, i.e., S100ß/SOX2 double positive non-ciliated cells and S100ß/SOX2/FOXJ1 triple positive multiciliated cells.


Subject(s)
Cilia/genetics , Forkhead Transcription Factors/genetics , Pituitary Gland, Anterior/metabolism , S100 Calcium Binding Protein beta Subunit/genetics , SOXB1 Transcription Factors/genetics , Stem Cells/metabolism , Animals , Cell Differentiation , Cilia/metabolism , Cilia/ultrastructure , Forkhead Transcription Factors/metabolism , Gene Expression , Immunohistochemistry , In Situ Hybridization, Fluorescence , Male , Pituitary Gland, Anterior/ultrastructure , Rats , Rats, Wistar , S100 Calcium Binding Protein beta Subunit/metabolism , SOXB1 Transcription Factors/metabolism , Stem Cells/ultrastructure
6.
Cell Tissue Res ; 366(2): 363-370, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27314403

ABSTRACT

Microtubules play an important role in the intracellular transport of secretory granules in endocrine cells and in mitosis and the maintenance of cell morphology and are composed of heterodimers of α- and ß-tubulin. α-Tubulin N-acetyltransferase 1 (ATAT1), which acetylates the lysine residue at position 40 of α-tubulin, functions not only in stabilizing microtubule structures and forming the primary cilium assembly but also in vesicular trafficking in neurons. However, the localization of ATAT1 and the role of α-tubulin acetylation in endocrine cells in the pituitary are still poorly understood. Corticotrophs in the anterior lobe of the pituitary produce and secrete adrenocorticotropin (ACTH). Although removal of the adrenal gland, a target organ of ACTH, is reported to promote the synthesis and secretion of ACTH in corticotrophs and to induce structural alterations in their organelles, uncertainty remains as to whether the acetylation of α-tubulin is involved in such intracellular events of corticotrophs. We investigate the expression and localization of ATAT1 and the acetylation of α-tubulin in the pituitary of normal and adrenalectomized rats. We find that ATAT1 is localized to the Golgi apparatus of endocrine cells in the anterior lobe of normal pituitary and that the expression levels of ATAT1 and acetylation levels of α-tubulin increase following adrenalectomy. These results agree with the hypothesis that the acetylation of α-tubulin by ATAT1 regulates the intracellular transport of secretory granules in corticotrophs.


Subject(s)
Adrenalectomy , Adrenocorticotropic Hormone/biosynthesis , Arylamine N-Acetyltransferase/metabolism , Corticotrophs/metabolism , Isoenzymes/metabolism , Tubulin/metabolism , Acetylation , Animals , Arylamine N-Acetyltransferase/genetics , Corticotrophs/cytology , Immunohistochemistry , Isoenzymes/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Wistar
7.
Med Mol Morphol ; 49(3): 133-43, 2016 Sep.
Article in English | MEDLINE | ID: mdl-26700226

ABSTRACT

Cilia are microtubule-based hair-like organelles on basal bodies located beneath the cell membrane in various tissues of multicellular animals, and are usually classified into motile cilia and primary cilia. Microtubules are assembled from the heterodimers of α- and ß-tubulin. The lysine residue at position 40 (K40) of α-tubulin is an important site for acetylation, and this site is acetylated in the cilium. α-Tubulin N-acetyltransferase 1 (ATAT1) is an acetyltransferase specific to the K40 residue of α-tubulin; however, its intracellular distribution in mammalian tissues remains unclear. In this study, we analyzed ATAT1 localization in rat trachea, oviduct, kidney, retina, testis and the third ventricle of the brain by immunohistochemical techniques using a specific antibody against ATAT1. ATAT1 was distributed to the motile cilia of multiciliated cells of the trachea, third ventricle of the brain and oviduct, and in the primary cilia of the renal medullary collecting duct. ATAT1 also localized to the primary cilia, inner and outer segments of retinal photoreceptor cells, and at the Golgi apparatus of spermatocytes and spermatids of testis. These results indicated that α-tubulin acetylation by ATAT1 at distinct subcellular positions may influence the functional regulation of microtubules and cilia in a variety of ciliated cells.


Subject(s)
Acetyltransferases/metabolism , Cilia/enzymology , Intracellular Space/metabolism , Animals , Antibody Specificity/immunology , Blotting, Western , Cilia/ultrastructure , Female , Humans , Male , Organ Specificity , Rats, Wistar
8.
Med Mol Morphol ; 48(1): 44-53, 2015 Mar.
Article in English | MEDLINE | ID: mdl-24760594

ABSTRACT

Primary cilium, an organelle found on nearly every cell in the human body, typically serves as the mechanical sensor of the cell. Lithium ion is known to promote the elongation of primary cilia in a variety of cell types, but it is unknown whether lithium is involved in the acetylation of α-tubulin which is essential for the assembly of primary cilia. In order to reveal the relationship between the elongation of primary cilia with lithium and the acetylation of α-tubulin, we first observed the formation and structure of primary cilia in KD cells, a cell line deriving fibroblasts in human labium. Subsequently, by immunohistochemical and western blot analysis we elucidated that the length of primary cilia and acetylation of α-tubulin are regulated by lithium chloride (LiCl) in the medium in a time- and concentration-dependent manner. We next performed the RT-PCR, RNAi-based experiments and biochemical study using an inhibitor of glycogen synthase kinase-3ßGSK-3ß). We found that LiCl mobilizes the α-tubulin N-acetyltransferase 1 (αTAT1) in the signaling pathway mediating GSK-3ß and adenylate cyclase III. In conclusion, our results suggested that LiCl treatments activate αTAT1 by the inhibition of GSK-3ß and promote the α-tubulin acetylation, and then elongate the primary cilia.


Subject(s)
Cilia/drug effects , Fibroblasts/drug effects , Lithium Chloride/pharmacology , Tubulin/metabolism , Acetylation/drug effects , Acetyltransferases/genetics , Acetyltransferases/metabolism , Adenylyl Cyclases/metabolism , Blotting, Western , Cell Line , Cilia/physiology , Cilia/ultrastructure , Dose-Response Relationship, Drug , Fibroblasts/cytology , Fibroblasts/metabolism , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Humans , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Phosphorylation/drug effects , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Time Factors
9.
Food Chem Toxicol ; 48(5): 1302-10, 2010 May.
Article in English | MEDLINE | ID: mdl-20188780

ABSTRACT

Genetically modified (GM) foods must be tested for safety, including by allergenicity tests to ensure that they do not contain new allergens or higher concentrations of known allergens than the same non-GM foods. In this study experimentally developed EGFP-transgenic chickens were used and evaluated the allergenicity of meat from the chicken based on a serological and two-dimensional difference gel electrophoresis (2D-DIGE) analysis. For the serological analysis, a Western blotting with allergen-specific antibodies and a proteomic analysis of chicken meat allergens with patients' sera, a so-called allergenome analysis, were used. The allergenome analysis allowed us to identify five IgE-binding proteins in chicken meat, including a known allergen, chicken serum albumin, and no qualitative difference in their expressions between the GM and non-GM chicken meat was found. Results of the 2D-DIGE analysis showed that none of the IgE-binding proteins in chicken meat were significantly changed in expression levels between non-GM and GM chicken, and only 3 of the 1500 soluble protein spots including green fluorescence protein were markedly different as a result of gene transfer. These above results showed that the combination of serological and 2D-DIGE analysis is a valid method of evaluating quality and quantity of allergens in GM foods.


Subject(s)
Allergens/adverse effects , Animals, Genetically Modified/immunology , Food Hypersensitivity/immunology , Food, Genetically Modified/adverse effects , Meat/adverse effects , Tissue Extracts/adverse effects , Allergens/immunology , Animals , Chickens , Electrophoresis, Gel, Two-Dimensional , Food Hypersensitivity/blood , Food Hypersensitivity/etiology , Gene Expression Profiling , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Humans , Immunoglobulin E/analysis , Immunoglobulin E/metabolism , Muscle Proteins/immunology , Peptide Mapping , Proteomics , Serum Albumin/analysis , Serum Albumin/immunology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tissue Extracts/immunology
10.
Exp Anim ; 54(1): 7-11, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15725676

ABSTRACT

The blue-breasted quail (Coturnix chinensis), the smallest species in the order Galliforms, is a candidate model animal for avian developmental engineering because it is precocious and prolific. This species requires 17 days to hatch and 8 to 9 weeks to mature to an adult body weight of about 50 g, whereas the Japanese quail (Coturnix japonica) requires 16 days to hatch and 6 to 8 weeks to mature to an adult body weight of 100 to 150 g. The early embryo is the most challenging embryonic stage in terms of culture and manipulation for avian biotechnology. We have evaluated various conditions for the culture of blue-breasted quail embryos from the blastoderm stage to hatching. A hatchability rate of 26% (10/39) is among the best of the various culture conditions examined in the present study and the embryo culture system should facilitate advances in avian biotechnology.


Subject(s)
Blastoderm , Coturnix , Embryo Culture Techniques/methods , Quail/embryology , Animals , Biotechnology , Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...