Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Chem ; 7(1): 106, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724622

ABSTRACT

Strong and oriented electric fields are known to influence structure as well as reactivity. The strong electric field (EF) between the tip of a scanning tunneling microscope (STM) and graphite has been used to modulate two-dimensional (2D) polymerization of aryl boronic acids where switching the polarity of the substrate bias enabled reversible transition between self-assembled molecular networks of monomers and crystalline 2D polymer (2DP) domains. Here, we untangle the different factors influencing the EF-mediated (de)polymerization of a boroxine-based 2DP on graphite. The influence of the solvent was systematically studied by varying the nature from polar protic to polar aprotic to non-polar. The effect of monomer concentration was also investigated in detail with a special focus on the time-dependence of the transition. Our experimental observations indicate that while the nucleation of 2DP domains is not initiated by the applied electric field, their depolymerization and subsequent desorption, are a consequence of the change in the polarity of the substrate bias within the area scanned by the STM tip. We conclude that the reversible transition is intimately linked to the bias-induced adsorption and desorption of the monomers, which, in turn, could drive changes in the local concentration of the monomers.

2.
ACS Nano ; 18(5): 4287-4296, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38259041

ABSTRACT

The reversible formation of hydrogen bonds is a ubiquitous mechanism for controlling molecular assembly in biological systems. However, achieving predictable reversibility in artificial two-dimensional (2D) materials remains a significant challenge. Here, we use an external electric field (EEF) at the solid/liquid interface to trigger the switching of H-bond-linked 2D networks using a scanning tunneling microscope. Assisted by density functional theory and molecular dynamics simulations, we systematically vary the molecule-to-molecule interactions, i.e., the hydrogen-bonding strength, as well as the molecule-to-substrate interactions to analyze the EEF switching effect. By tuning the building block's hydrogen-bonding ability (carboxylic acids vs aldehydes) and substrate nature and charge (graphite, graphene/Cu, graphene/SiO2), we induce or freeze the switching properties and control the final polymorphic output in the 2D network. Our results indicate that the switching ability is not inherent to any particular building block but instead relies on a synergistic combination of the relative adsorbate/adsorbate and absorbate/substrate energetic contributions under surface polarization. Furthermore, we describe the dynamics of the switching mechanism based on the rotation of carboxylic groups and proton exchange, which generate the polarizable species that are influenced by the EEF. This work provides insights into the design and control of reversible molecular assembly in 2D materials, with potential applications in a wide range of fields, including sensors and electronics.

3.
Chem Sci ; 14(32): 8607-8614, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37592977

ABSTRACT

Precise synthesis of graphene nanoribbons (GNRs) is of great interest to chemists and materials scientists because of their unique opto-electronic properties and potential applications in carbon-based nanoelectronics and spintronics. In addition to the tunable edge structure and width, introducing curvature in GNRs is a powerful structural feature for their chemi-physical property modification. Here, we report an efficient solution synthesis of the first pyrene-based GNR (PyGNR) with curved geometry via one-pot K-region oxidation and Scholl cyclization of its corresponding well-soluble tetrahydropyrene-based polyphenylene precursor. The efficient A2B2-type Suzuki polymerization and subsequent Scholl reaction furnishes up to ∼35 nm long curved GNRs bearing cove- and armchair-edges. The construction of model compound 1, as a cutout of PyGNR, from a tetrahydropyrene-based oligophenylene precursor proves the concept and efficiency of the one-pot K-region oxidation and Scholl cyclization, which is clearly revealed by single crystal X-ray diffraction analysis. The structure and optical properties of PyGNR are investigated by Raman, FT-IR, solid-state NMR, STM and UV-Vis analysis with the support of DFT calculations. PyGNR exhibits a narrow optical bandgap of ∼1.4 eV derived from a Tauc plot, qualifying as a low-bandgap GNR. Moreover, THz spectroscopy on PyGNR estimates its macroscopic charge mobility µ as ∼3.6 cm2 V-1 s-1, outperforming several other curved GNRs reported via conventional Scholl reaction.

4.
Chemistry ; 29(37): e202301588, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37259897

ABSTRACT

Invited for the cover of this issue is the group of Manuel Souto and co-workers at the University of Aveiro and CICECO-Aveiro Institute of Materials. The image depicts the direct C-H arylation of dithiophene-tetrathiafulvalene (DT-TTF) and the self-assembly of DT-TTF-tetrabenzoic acid studied by using scanning tunnelling microscopy. Read the full text of the article at 10.1002/chem.202300572.

5.
Chemistry ; 29(37): e202300572, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37021746

ABSTRACT

Tetrathiafulvalene is among the best known building blocks in molecular electronics due to its outstanding electron-donating and redox properties. Among its derivatives, dithiophene-tetrathiafulvalene (DT-TTF) has attracted considerable interest in organic electronics, owing to its high field-effect mobility. Herein, we report the direct C-H arylation of DT-TTF to synthesise mono- and tetraarylated derivatives functionalised with electron-withdrawing and electron-donating groups in order to evaluate their influence on the electronic properties by cyclic voltammetry, UV-vis spectroscopy and theoretical calculations. Self-assembly of the DT-TTF-tetrabenzoic acid derivative was studied by using scanning tunnelling microscopy (STM) which revealed the formation of ordered, densely packed 2D hydrogen-bonded networks at the graphite/liquid interface. The tetrabenzoic acid derivative can attain a planar geometry on the graphite surface due to van der Waals interactions with the surface and H-bonding with neighbouring molecules. This study demonstrates a simple method for the synthesis of arylated DT-TTF derivatives towards the design and construction of novel π-extended electroactive frameworks.

6.
J Am Chem Soc ; 144(1): 228-235, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34962807

ABSTRACT

Structurally precision graphene nanoribbons (GNRs) are promising candidates for next-generation nanoelectronics due to their intriguing and tunable electronic structures. GNRs with hybrid edge structures often confer them unique geometries associated with exotic physicochemical properties. Herein, a novel type of cove-edged GNRs with periodic short zigzag-edge segments is demonstrated. The bandgap of this GNR family can be tuned using an interplay between the length of the zigzag segments and the distance of two adjacent cove units along the opposite edges, which can be converted from semiconducting to nearly metallic. A family member with periodic cove-zigzag edges based on N = 6 zigzag-edged GNR, namely 6-CZGNR-(2,1), is successfully synthesized in solution through the Scholl reaction of a unique snakelike polymer precursor (10) that is achieved by the Yamamoto coupling of a structurally flexible S-shaped phenanthrene-based monomer (1). The efficiency of cyclodehydrogenation of polymer 10 toward 6-CZGNR-(2,1) is validated by FT-IR, Raman, and UV-vis spectroscopies, as well as by the study of two representative model compounds (2 and 3). Remarkably, the resultant 6-CZGNR-(2,1) exhibits an extended and broad absorption in the near-infrared region with a record narrow optical bandgap of 0.99 eV among the reported solution-synthesized GNRs. Moreover, 6-CZGNR-(2,1) exhibits a high macroscopic carrier mobility of ∼20 cm2 V-1 s-1 determined by terahertz spectroscopy, primarily due to the intrinsically small effective mass (m*e = m*h = 0.17 m0), rendering this GNR a promising candidate for nanoelectronics.

7.
Langmuir ; 33(48): 13733-13739, 2017 12 05.
Article in English | MEDLINE | ID: mdl-29110489

ABSTRACT

The effect of the Au crystalline plane on the adsorption of different thiols and selenols is studied via reductive desorption (RD) and X-ray photoelectron spectroscopy (XPS) measurements. Self-assembled monolayers (SAMs) using aliphatic (ATs) and aromatic thiols (ArTs) on both Au(111) and Au(100) were prepared. The electrochemical stability of these SAMs on both surfaces is evaluated by comparing the position of the RD peaks. The longer the AT chain the more stable the SAM on Au(100) when compared to Au(111). By means of XPS measurements, we determine that the binding energy (BE) of the S 2p signal corresponding to the S atoms at the thiol/Au interface, commonly assigned at 162.0 eV, shifts 0.2 eV from Au(111) to Au(100) for SAMs prepared using thiols with the C* (C atom bonded to S) in sp3 hybridization, such as ATs. However, when the thiol presents the C* with an sp2 hybridization, such as in the case of ArTs, the BE remains at 162.0 eV regardless of the surface plane. Selenol-based SAMs were characterized comparatively on both Au(100) and Au(111). Our results show that selenol SAMs become even more electrochemically stable on Au(100) with respect to Au(111) than the analogue sulfur-based SAM. According to our results, we suggest that the electronic distribution around the Au-S/Se bond could be responsible for the different structural arrangements reported in the literature (gold adatoms, etc.), which should be dependent on the crystalline face (Au(hkl)-S) and the chemical nature of the environment of the adsorbates (sp3-C* vs sp2-C* and Au-SR vs Au-SeR).

8.
Langmuir ; 32(4): 947-53, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26799556

ABSTRACT

We show that homogeneously mixed self-assembled monolayers (SAMs) of mercaptoalkanoic acids of different chain lengths can be used to build up a pH-sensitive supramolecular switch. The acids with short and long alkyl chains interact via the strong hydrogen bond between carboxylic acid groups. The pH acts as a trigger by breaking or restoring the hydrogen bond interaction in basic or acidic solutions, respectively. The corresponding changes in the monolayer structure were determined by ellipsometry, surface-enhanced Raman spectroscopy, and contact angle measurements. Density functional theory (DFT) calculations were performed to elucidate the structures of interacting molecules compatible with the surface coverage obtained from electrochemical reductive desorption experiments. The simplicity of the preparation procedure assures a high reproducibility whereas the stability of the homogeneous mixed SAM guarantees the reversibility of the switching process.

SELECTION OF CITATIONS
SEARCH DETAIL
...