Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 857, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31965038

ABSTRACT

Carbon nanotube reinforced nickel matrix composites (Ni/CNT) with different CNT compositions were fabricated by solid state processing and subjected to severe plastic deformation (SPD) by means of high pressure torsion (HPT). A thorough study on the microstructural changes during heating and on the thermal stability was performed using differential scanning calorimetry (DSC), high temperature X-ray diffraction (HT-XRD) and electron backscattered diffraction (EBSD). Furthermore, the formation and dissolution of the metastable nickel carbide Ni3C phase was evidenced by DSC and HT-XRD in composites, where sufficient carbon atoms are available, as a consequence of irreversible damage on the CNT introduced by HPT. Finally, it was shown that the composites exhibited an improved thermal stability with respect to nickel samples processed under the same conditions, with a final grain size dependent on the CNT volume fraction according to a VCNT-1/3 relationship and that lied within the ultrafine grained range.

2.
Sci Rep ; 9(1): 15898, 2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31685926

ABSTRACT

Due to their applicability for manufacturing dense, hard and stable coatings, Physical Vapor Deposition (PVD) techniques, such as High Power Impulse Magnetron Sputtering (HiPIMS), are currently used to deposit transition metal nitrides for tribological applications. Cr-Al-N is one of the most promising ceramic coating systems owing to its remarkable mechanical and tribological properties along with excellent corrosion resistance and high-temperature stability. This work explores the possibility of further improving Cr-Al-N coatings by modulation of its microstructure. Multilayer-like Cr1-xAlxN single films were manufactured using the angular oscillation of the substrate surface during HiPIMS. The sputtering process was accomplished using pulse frequencies ranging from 200 to 500 Hz and the resulting films were evaluated with respect to their hardness, Young's modulus, residual stresses, deposition rate, crystallite size, crystallographic texture, coating morphology, chemical composition, and surface roughness. The multilayer-like structure, with periodicities ranging from 250 to 550 nm, were found associated with misorientation gradients and small-angle grain boundaries along the columnar grains, rather than mesoscopic chemical modulation of the microstructure. This minute modification of microstructure along with associated compressive residual stresses are concluded to explain the increased hardness ranging from 25 to 30 GPa, which is at least 20% over that expected for a film of the same chemical composition grown by a conventional PVD processing route.

3.
ChemSusChem ; 10(18): 3611-3623, 2017 09 22.
Article in English | MEDLINE | ID: mdl-28741864

ABSTRACT

A hybrid membrane pseudocapacitive deionization (MPDI) system consisting of a hydrated vanadium pentoxide (hV2 O5 )-decorated multi-walled carbon nanotube (MWCNT) electrode and one activated carbon electrode enables sodium ions to be removed by pseudocapacitive intercalation with the MWCNT-hV2 O5 electrode and chloride ion to be removed by non-faradaic electrosorption of the porous carbon electrode. The MWCNT-hV2 O5 electrode was synthesized by electrochemical deposition of hydrated vanadium pentoxide on the MWCNT paper. The stable electrochemical operating window for the MWCNT-hV2 O5 electrode was between -0.5 V and +0.4 V versus Ag/AgCl, which provided a specific capacity of 44 mAh g-1 (corresponding with 244 F g-1 ) in aqueous 1 m NaCl. The desalination performance of the MPDI system was investigated in aqueous 200 mm NaCl (brackish water) and 600 mm NaCl (seawater) solutions. With the aid of an anion and a cation exchange membrane, the MPDI hybrid cell was operated from -0.4 to +0.8 V cell voltage without crossing the reduction and oxidation potential limit of both electrodes. For the 600 mm NaCl solution, the NaCl salt adsorption capacity of the cell was 23.6±2.2 mg g-1 , which is equivalent to 35.7±3.3 mg g-1 normalized to the mass of the MWCNT-hV2 O5 electrode. Additionally, we propose a normalization method for the electrode material with faradaic reactions based on sodium uptake capacities.


Subject(s)
Electric Capacitance , Nanotubes, Carbon/chemistry , Saline Waters/chemistry , Salinity , Seawater/chemistry , Vanadium Compounds/chemistry , Water Purification/methods , Adsorption , Electrochemistry , Electrodes , Sodium/chemistry , Sodium/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...