Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 25(5): 541-8, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11309144

ABSTRACT

Plant cells are continuously exposed to environmental stresses such as hyper-osmolarity, and have to respond in order to survive. When 32P-labelled Chlamydomonas moewusii cells were challenged with NaCl, the formation of a new radiolabelled phospholipid was stimulated, which was barely detectable before stimulation. The phospholipid was identified as lyso-phosphatidic acid (LPA), and was the only lyso-phospholipid to be accumulated. The increase in LPA was dose- and time-dependent. When other osmotically active compounds were used, the formation of LPA was also induced with similar kinetics, although salts were better inducers than non-salts. At least part of the LPA was generated by phospholipase A2 (PLA2) hydrolysing phosphatidic acid (PA). This claim is based on PA formation preceding LPA production, and PLA2 inhibitors decreasing the accumulation of LPA and promoting the conversion of PA to diacylglycerol pyrophosphate. The latter is another metabolic derivative of PA that is implicated in cell signalling. The involvement of multiple lipid-signalling pathways in hyperosmotic stress responses is discussed.


Subject(s)
Chlamydomonas/metabolism , Lysophospholipids/biosynthesis , Phospholipases A/metabolism , Animals , Chlamydomonas/enzymology , Chlorpromazine/pharmacology , Chromatography, Thin Layer , Cold Temperature , Enzyme Activation , Enzyme Inhibitors/pharmacology , Hot Temperature , Light , Lysophospholipids/metabolism , Osmotic Pressure , Phosphatidic Acids/biosynthesis , Phosphatidic Acids/metabolism , Phospholipases A/antagonists & inhibitors , Phospholipases A2 , Sodium Chloride/pharmacology
2.
Phytochemistry ; 53(2): 265-70, 2000 Jan.
Article in English | MEDLINE | ID: mdl-10680181

ABSTRACT

The fatty acid and polar lipid compositions of the unicellular green alga Chlamydomonas moewusii were characterized. Since this organism is an important plant model for phospholipid-based signal transduction, interest was focused on the lipids phosphatidic acid, phosphatidylinositolphosphate and phosphatidylinositolbisphosphate. A phosphatidylinositol:phosphatidylinositolphosphate: phosphatidylinositolbisphosphate ratio of 100:1.7:1.3 was found. The polyphosphoinositides accounted for 0.8 mol% of the total phospholipids and their fatty acid compositions were similar to that of phosphatidylinositol except for the enrichment of linolenic acid in phosphatidylinositol phosphate. Phosphatidic acid accounted for 0.67 mol% of the phospholipids. Major structural glycerolipids were monogalactosyldiacylglycerol (35 mol%), digalactosyldiacylglycerol (15 mol%), sulfoquinovosyldiacylglycerol (10 mol%), diacylglyceryltrimethylhomoserine (16 mol%), phosphatidylglycerol (9 mol%), phosphatidylethanolamine (8 mol%) and phosphatidylinositol (6 mol%). Relative changes in the total fatty acid compositions found during growth on nutrient-limited medium reflected mainly alterations in the compositions of the chloroplast lipids phosphatidylglycerol and monogalactosyldiacylglycerol. [32P]Pi-incorporation studies revealed that it took 6 days before the amount of label in the major phospholipids was proportional to their abundance.


Subject(s)
Chlamydomonas/metabolism , Glycerides/biosynthesis , Phospholipids/biosynthesis , Animals , Chlamydomonas/chemistry , Glycerides/chemistry , Glycerides/isolation & purification , Kinetics , Phosphates/metabolism , Phospholipids/chemistry , Phospholipids/isolation & purification , Phosphorus Radioisotopes
3.
Plant Cell ; 7(12): 2197-2210, 1995 Dec.
Article in English | MEDLINE | ID: mdl-12242371

ABSTRACT

We provide direct evidence for phospholipase D (PLD) signaling in plants by showing that this enzyme is stimulated by the G protein activators mastoparan, ethanol, and cholera toxin. An in vivo assay for PLD activity in plant cells was developed based on the use of a "reporter alcohol" rather than water as a transphosphatidylation substrate. The product was a phosphatidyl alcohol, which, in contrast to the normal product phosphatidic acid, is a specific measure of PLD activity. When 32P-labeled cells were treated with 0.1% n-butanol, 32P-phosphatidyl butanol (32P-PtdBut) was formed in a time-dependent manner. In cells treated with any of the three G protein activators, the production of 32P-PtdBut was increased in a dose-dependent manner. The G protein involved was pertussis toxin insensitive. Ethanol could activate PLD but was itself consumed by PLD as transphosphatidylation substrate. In contrast, secondary alcohols (e.g., sec-butyl alcohol) activated PLD but did not function as substrate, whereas tertiary alcohols did neither. Although most of the experiments were performed with the green alga Chlamydomonas eugametos, the relevance for higher plants was demonstrated by showing that PLD in carnation petals could also be activated by mastoparan. The results indicate that PLD activation must be considered as a potential signal transduction mechanism in plants, just as in animals.

SELECTION OF CITATIONS
SEARCH DETAIL
...