Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840520

ABSTRACT

Differences in demographic and environmental niches facilitate plant species coexistence in tropical forests. However, the adaptations that enable species to achieve higher demographic rates (e.g. growth or survival) or occupy unique environmental niches (e.g. waterlogged conditions) remain poorly understood. Anatomical traits may better predict plant environmental and demographic strategies because they are direct measurements of structures involved in these adaptations. We collected 18 leaf and twig traits from 29 tree species in a tropical freshwater swamp forest in Singapore. We estimated demographic parameters of the 29 species from growth and survival models, and degree of association toward swamp habitats. We examined pairwise trait-trait, trait-demography and trait-environment links while controlling for phylogeny. Leaf and twig anatomical traits were better predictors of all demographic parameters than other commonly measured leaf and wood traits. Plants with wider vessels had faster growth rates but lower survival rates. Leaf and spongy mesophyll thickness predicted swamp association. These findings demonstrate the utility of anatomical traits as indicators of plant hydraulic strategies and their links to growth-mortality trade-offs and waterlogging stress tolerance that underlie species coexistence mechanisms in tropical forest trees.

2.
Plant Divers ; 46(3): 406-415, 2024 May.
Article in English | MEDLINE | ID: mdl-38798721

ABSTRACT

Bamboo plants are an essential component of tropical ecosystems, yet their vulnerability to climate extremes, such as drought, is poorly understood due to limited knowledge of their hydraulic properties. Cephalostachyum pergracile, a commonly used tropical bamboo species, exhibited a substantially higher mortality rate than other co-occurring bamboos during a severe drought event in 2019, but the underlying mechanisms remain unclear. This study investigated the leaf and stem hydraulic traits related to drought responses, including leaf-stem embolism resistance (P50leaf; P50stem) estimated using optical and X-ray microtomography methods, leaf pressure-volume and water-releasing curves. Additionally, we investigated the seasonal water potentials, native embolism level (PLC) and xylem water source using stable isotope. We found that C. pergracile exhibited strong resistance to embolism, showing low P50leaf, P50stem, and turgor loss point, despite its rapid leaf water loss. Interestingly, its leaves displayed greater resistance to embolism than its stem, suggesting a lack of effective hydraulic vulnerability segmentation (HVS) to protect the stem from excessive xylem tension. During the dry season, approximately 49% of the water was absorbed from the upper 20-cm-deep soil layer. Consequently, significant diurnal variation in leaf water potentials and an increase in midday PLC from 5.87 ± 2.33% in the wet season to 12.87 ± 4.09% in the dry season were observed. In summary, this study demonstrated that the rapid leaf water loss, high reliance on surface water, and a lack of effective HVS in C. pergracile accelerated water depletion and increased xylem embolism even in the typical dry season, which may explain its high mortality rate during extreme drought events in 2019.

3.
Plant Divers ; 46(1): 126-133, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38343598

ABSTRACT

Lipids may play an important role in preventing gas embolisms by coating nanobubbles in xylem sap. Few studies on xylem sap lipids have been reported for temperate plants, and it remain unclear whether sap lipids have adaptational significance in tropical plants. In this study, we quantify the lipid composition of xylem sap for angiosperm species from a tropical savanna (seven species) and a seasonal rainforest (five species) using mass spectrometry. We found that all twelve species studied contained lipids in their xylem sap, including galactolipids, phospholipids and triacylglycerol, with a total lipid concentration ranging from 0.09 to 0.26 nmol/L. There was no difference in lipid concentration or composition between plants from the two sites, and the lipid concentration was negatively related to species' open vessel volume. Furthermore, savanna species showed little variation in lipid composition between the dry and the rainy season. These results support the hypothesis that xylem sap lipids are derived from the cytoplasm of individual conduit cells, remain trapped inside individual conduits, and undergo few changes in composition over consecutive seasons. A xylem sap lipidomic data set, which includes 12 tropical tree species from this study and 11 temperate tree species from literature, revealed no phylogenetic signals in lipid composition for these species. This study fills a knowledge gap in the lipid content of xylem sap in tropical trees and provides additional support for their common distribution in xylem sap of woody angiosperms. It appears that xylem sap lipids have no adaptive significance.

4.
Int J Biometeorol ; 67(6): 1017-1030, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37072578

ABSTRACT

Climate warming may induce growth decline in warm-temperate areas subjected to seasonal soil moisture deficit, whereas increasing atmospheric CO2 concentration (Ca) is expected to enhance tree growth. An accurate understanding of tree growth and physiological processes responding to climate warming and increasing Ca is critical. Here, we analyzed tree-ring stable carbon isotope and wood anatomical traits of Pinus tabuliformis from Qinling Mountains in China to understand how lumen diameter (LD) determining potential hydraulic conductivity and cell-wall thickness (CWT) determining carbon storage responded to climate and Ca. The effects of climate and Ca on intrinsic water-use efficiency (iWUE) were isolated, and iWUE values due to only-climate (iWUEClim) and only-CO2 effects (iWUECO2) were obtained. During a low-iWUE period, the influences of climate on earlywood (EW) LD and latewood (LW) CWT prevailed. During a high-iWUE period, CO2 fertilization promoted cell enlargement and carbon storage but this was counteracted by a negative influence of climate warming. The limiting direct effects of iWUEClim and indirect effects of climate on EW LD were greater than on LW CWT. P. tabuliformis in temperate forests will face a decline of growth and carbon fixation, but will produce embolism-resistant tracheids with narrow lumen responding to future hotter droughts.


Subject(s)
Water , Wood , Carbon Dioxide , Climate , Trees , Forests , Carbon , Droughts
5.
Plant Physiol ; 190(4): 2246-2259, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36047846

ABSTRACT

Fine roots and leaves, the direct interfaces of plants with their external environment along the soil-plant-atmosphere continuum, are at the front line to ensure plant adaptation to their growing habitat. This study aimed to compare the vulnerability to water deficit of fine roots and leaves of woody species from karst and mangrove forests-two water-stressed habitats-against that of timber and ornamental woody species grown in a well-watered common garden. Thus, pressure-volume curves in both organs of 37 species (about 12 species from each habitat) were constructed. Fine roots wilted at a less negative water potential than leaves in 32 species and before branch xylem lost 50% of its hydraulic conductivity in the 17 species with available data on branch xylem embolism resistance. Thus, turgor loss in fine roots can act as a hydraulic fuse mechanism against water stress. Mangroves had higher leaf resistance against wilting and lower leaf-specific area than the karst and common garden plants. Their fine roots had high specific root lengths (SRL) and high capacitance to buffer water stress. Karst species had high leaf bulk modulus, low leaf capacitance, and delayed fine root wilting. This study showed the general contribution of fine roots to the protection of the whole plant against underground water stress. Our findings highlight the importance of water storage in the leaves and fine roots of mangrove species and high tolerance to water deficit in the leaves of mangrove species and the fine roots of some karst species.


Subject(s)
Dehydration , Plant Leaves , Xylem , Ecosystem , Soil
6.
New Phytol ; 229(3): 1467-1480, 2021 02.
Article in English | MEDLINE | ID: mdl-32981106

ABSTRACT

The evolution of angiosperms was accompanied by the segregation and specialisation of their xylem tissues. This study aimed to determine whether the fraction and arrangement of parenchyma tissue influence the hydraulic efficiency-safety trade-off in the basal angiosperms. We examined xylem anatomical structure and hydraulic functioning of 28 woody species of Magnoliids in a tropical rainforest of Madagascar and reported, for the first time, quantitative measurements that support the relationship between vessel-to-xylem parenchyma connectivity and the hydraulic efficiency-safety trade-off. We also introduced a new measurement - the distance of species from the trade-off limit - to quantify the co-optimisation of hydraulic efficiency and safety. Although the basal angiosperms in this study had low hydraulic conductivity and safety, species with higher axial parenchyma fraction (APf) had significantly higher hydraulic conductivity. Hydraulic efficiency-safety optimisation was accompanied by higher APf and vessel-to-axial parenchyma connectivity. Conversely, species exhibiting high ray parenchyma fraction and high vessel-to-ray connectivity had lower Ks and were further away from the hydraulic trade-off limit line. Our results provide evidence that axial parenchyma fraction and paratracheal arrangement are associated with both enhanced hydraulic efficiency and safety.


Subject(s)
Magnoliopsida , Trees , Madagascar , Water , Xylem
SELECTION OF CITATIONS
SEARCH DETAIL
...