Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
PLoS One ; 17(12): e0278206, 2022.
Article in English | MEDLINE | ID: mdl-36584052

ABSTRACT

"Candidatus Berkiella cookevillensis" (strain CC99) and "Candidatus Berkiella aquae" (strain HT99), belonging to the Coxiellaceae family, are gram-negative bacteria isolated from amoebae in biofilms present in human-constructed water systems. Both bacteria are obligately intracellular, requiring host cells for growth and replication. The intracellular bacteria-containing vacuoles of both bacteria closely associate with or enter the nuclei of their host cells. In this study, we analyzed the genome sequences of CC99 and HT99 to better understand their biology and intracellular lifestyles. The CC99 genome has a size of 2.9Mb (37.9% GC) and contains 2,651 protein-encoding genes (PEGs) while the HT99 genome has a size of 3.6Mb (39.4% GC) and contains 3,238 PEGs. Both bacteria encode high proportions of hypothetical proteins (CC99: 46.5%; HT99: 51.3%). The central metabolic pathways of both bacteria appear largely intact. Genes for enzymes involved in the glycolytic pathway, the non-oxidative branch of the phosphate pathway, the tricarboxylic acid pathway, and the respiratory chain were present. Both bacteria, however, are missing genes for the synthesis of several amino acids, suggesting reliance on their host for amino acids and intermediates. Genes for type I and type IV (dot/icm) secretion systems as well as type IV pili were identified in both bacteria. Moreover, both bacteria contain genes encoding large numbers of putative effector proteins, including several with eukaryotic-like domains such as, ankyrin repeats, tetratricopeptide repeats, and leucine-rich repeats, characteristic of other intracellular bacteria.


Subject(s)
Amoeba , Coxiellaceae , Humans , Genomics , Amoeba/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
2.
Front Cell Infect Microbiol ; 11: 635673, 2021.
Article in English | MEDLINE | ID: mdl-33912474

ABSTRACT

Acinetobacter baumannii has been recognized as a critical pathogen that causes severe infections worldwide not only because of the emergence of extensively drug-resistant (XDR) derivatives, but also because of its ability to persist in medical environments and colonize compromised patients. While there are numerous reports describing the mechanisms by which this pathogen acquires resistance genes, little is known regarding A. baumannii's virulence functions associated with rare manifestations of infection such as necrotizing fasciitis, making the determination and implementation of alternative therapeutic targets problematic. To address this knowledge gap, this report describes the analysis of the NFAb-1 and NFAb-2 XDR isolates, which were obtained at two time points during a fatal case of necrotizing fasciitis, at the genomic and functional levels. The comparative genomic analysis of these isolates with the ATCC 19606T and ATCC 17978 strains showed that the NFAb-1 and NFAb-2 isolates are genetically different from each other as well as different from the ATCC 19606T and ATCC 17978 clinical isolates. These genomic differences could be reflected in phenotypic differences observed in these NFAb isolates. Biofilm, cell viability and flow cytometry assays indicate that all tested strains caused significant decreases in A549 human alveolar epithelial cell viability with ATCC 17978, NFAb-1 and NFAb-2 producing significantly less biofilm and significantly more hemolysis and capacity for intracellular invasion than ATCC 19606T. NFAb-1 and NFAb-2 also demonstrated negligible surface motility but significant twitching motility compared to ATCC 19606T and ATCC 17978, likely due to the presence of pili exceeding 2 µm in length, which are significantly longer and different from those previously described in the ATCC 19606T and ATCC 17978 strains. Interestingly, infection with cells of the NFAb-1 isolate, which were obtained from a premortem blood sample, lead to significantly higher mortality rates than NFAb-2 bacteria, which were obtained from postmortem tissue samples, when tested using the Galleria mellonella in vivo infection model. These observations suggest potential changes in the virulence phenotype of the A. baumannii necrotizing fasciitis isolates over the course of infection by mechanisms and cell processes that remain to be identified.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Fasciitis, Necrotizing , Anti-Bacterial Agents , Biofilms , Genomics , Humans , Phenotype
3.
Curr Res Food Sci ; 3: 207-216, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32914137

ABSTRACT

Polysaccharides isolated from Panax quinquefolius roots are widely used as nutraceuticals due to their immunomodulatory properties. Despite their popularity, several challenges exist in isolating ginseng root polysaccharides such as batch-to-batch structural inconsistencies and bacterial endotoxin contamination. A plant tissue culture-based platform offers a potential solution to isolate natural polysaccharide fractions with consistent chemical characteristics and reduced endotoxin content. In this study, an acidic polysaccharide fraction (AGC3) with immunomodulatory properties was isolated from Panax quinquefolius suspension cultures. The heterogeneous fraction (molecular weight: 4.81 and 32.14 kDa), purified by anion exchange chromatography, was predominantly composed of galactose (>60%) along with the presence of rhamnose, arabinose, glucose, glucuronic acid and galacturonic acid. The major glycosidic linkages were found to be t-Galp (47.7%), 4-Galp (15.6%), 2,4-Rhap (8.1%), 6-Galp (8.1%) and 4-GalAp (6.8%). Structural analyses indicated the presence of a pectic rhamnogalacturonan I polysaccharide in AGC3. AGC3 significantly (p < 0.05) stimulated RAW 264.7 murine macrophage cells and primary murine splenocytes by enhancing the production of several immunomodulatory mediators such as IL-6, TNF-α, GM-CSF and MCP-1. The results also indicated the putative roles of NF-κB (p65/RelA) and MAPK (p38) signaling pathways in the immunostimulatory response. Additionally, AGC3 induced murine splenocyte proliferation, another major indicator of immunostimulation. Overall, AGC3 has the potential to be used as an immunostimulatory nutraceutical.

4.
Microbiol Resour Announc ; 9(13)2020 Mar 26.
Article in English | MEDLINE | ID: mdl-32217671

ABSTRACT

Carbapenem-resistant Acinetobacter baumannii is a bacterial pathogen with serious implications for human health and is recognized as an urgent threat by the Centers for Disease Control and Prevention (CDC). Total DNA from two A. baumannii clinical isolates collected over 3 days from a fatal case of necrotizing fasciitis has been sequenced to >30× coverage.

5.
PLoS One ; 14(12): e0226068, 2019.
Article in English | MEDLINE | ID: mdl-31825988

ABSTRACT

Every year, more than 250,000 invasive candidiasis infections are reported with 50,000 deaths worldwide. The limited number of antifungal agents necessitates the need for alternative antifungals with potential novel targets. The 2-benzylidenebenzofuran-3-(2H)-ones have become an attractive scaffold for antifungal drug design. This study aimed to determine the antifungal activity of a synthetic aurone compound and characterize its mode of action. Using the broth microdilution method, aurone SH1009 exhibited inhibition against C. albicans, including resistant isolates, as well as C. glabrata, and C. tropicalis with IC50 values of 4-29 µM. Cytotoxicity assays using human THP-1, HepG2, and A549 human cell lines showed selective toxicity toward fungal cells. The mode of action for SH1009 was characterized using chemical-genetic interaction via haploinsufficiency (HIP) and homozygous (HOP) profiling of a uniquely barcoded Saccharomyces cerevisiae mutant collection. Approximately 5300 mutants were competitively treated with SH1009 followed by DNA extraction, amplification of unique barcodes, and quantification of each mutant using multiplexed next-generation sequencing. Barcode post-sequencing analysis revealed 238 sensitive and resistant mutants that significantly (FDR P values ≤ 0.05) responded to aurone SH1009. The enrichment analysis of KEGG pathways and gene ontology demonstrated the cell cycle pathway as the most significantly enriched pathway along with DNA replication, cell division, actin cytoskeleton organization, and endocytosis. Phenotypic studies of these significantly enriched responses were validated in C. albicans. Flow cytometric analysis of SH1009-treated C. albicans revealed a significant accumulation of cells in G1 phase, indicating cell cycle arrest. Fluorescence microscopy detected abnormally interrupted actin dynamics, resulting in enlarged, unbudded cells. RT-qPCR confirmed the effects of SH1009 in differentially expressed cell cycle, actin polymerization, and signal transduction genes. These findings indicate the target of SH1009 as a cell cycle-dependent organization of the actin cytoskeleton, suggesting a novel mode of action of the aurone compound as an antifungal inhibitor.


Subject(s)
Antifungal Agents/pharmacology , Benzofurans/pharmacology , Candida albicans/drug effects , Actin Cytoskeleton/drug effects , Antifungal Agents/chemistry , Benzofurans/chemistry , Candida albicans/genetics , Cell Line, Tumor , Cell Survival/drug effects , Drug Design , Drug Resistance, Fungal/genetics , G1 Phase Cell Cycle Checkpoints/drug effects , Gene Ontology , Humans , Microbial Sensitivity Tests , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development
6.
Front Microbiol ; 10: 1599, 2019.
Article in English | MEDLINE | ID: mdl-31396168

ABSTRACT

Acinetobacter baumannii A118, a strain isolated from the blood of an infected patient, is naturally competent and unlike most clinical strains, is susceptible to a variety of different antibiotics including those usually used for selection in genetic manipulations. These characteristics make strain A118 a convenient model for genetic studies of A. baumannii. To identify potential virulence factors, its complete genome was analyzed and compared to other A. baumannii genomes. A. baumannii A118 includes gene clusters coding for the acinetobactin and baumannoferrin iron acquisition systems. Iron-regulated expression of the BauA outer membrane receptor for ferric-acinetobactin complexes was confirmed as well as the utilization of acinetobactin. A. baumannii A118 also possesses the feoABC genes, which code for the main bacterial ferrous uptake system. The functionality of baumannoferrin was suggested by the ability of A. baumannii A118 culture supernatants to cross feed an indicator BauA-deficient strain plated on iron-limiting media. A. baumannii A118 behaved as non-motile but included the csuA/BABCDE chaperone-usher pilus assembly operon and produced biofilms on polystyrene and glass surfaces. While a known capsular polysaccharide (K) locus was identified, the outer core polysaccharide (OC) locus, which belongs to group B, showed differences with available sequences. Our results show that despite being susceptible to most antibiotics, strain A118 conserves known virulence-related traits enhancing its value as model to study A. baumannii pathogenicity.

7.
Int J Biol Macromol ; 139: 221-232, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31376448

ABSTRACT

In this study, we propose the use of a plant tissue culture-based system for the production of polysaccharides with consistent chemical characteristics and reduced endotoxin content. Polysaccharides were isolated from suspension cultures of Panax quinquefolius (American ginseng), a widely used medicinal herb. A neutral fraction, AGC1, purified by anion exchange and size exclusion chromatography, displayed immunostimulatory activity in vitro and ex vivo. AGC1 (average molecular weight: 5.2kDa) was predominantly composed of galactose (>60%) along with the presence of several other neutral sugars such as arabinose, xylose, glucose, mannose and rhamnose in minor amounts. The major glycosidic linkages were found to be 3-Galp (48.5%), 3,6-Galp (10.2%), t-Galp (5.2%), 6-Galp (4.4%), 4-Glcp (5.7%), 4-Arap/5-Araf (4.0%) and t-Araf (4.5%). AGC1 significantly (p<0.05) stimulated the expression of a range of proinflammatory mediators in RAW 264.7 murine macrophages such as IL-6, TNF-α, MCP-1 and GM-CSF. Additionally, AGC1 treatment of RAW 264.7 cells stimulated NOS2 gene expression, leading to increased levels of iNOS and downstream NO. Consistent with this, AGC1 was able to act as an immunostimulant in primary murine splenocytes, enhancing cell proliferation, as well as NO and TNF-α production. Our results also indicate the partial role of NF-κB pathway in the immunostimulatory response.


Subject(s)
Culture Media, Conditioned/chemistry , Culture Media, Conditioned/pharmacology , Panax/chemistry , Phytochemicals/chemistry , Phytochemicals/pharmacology , Polysaccharides/chemistry , Polysaccharides/pharmacology , Animals , Cells, Cultured , Cytokines/metabolism , Immunologic Factors/chemistry , Immunologic Factors/pharmacology , Immunomodulation/drug effects , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Mice , Molecular Weight , Nitric Oxide/metabolism , Panax/cytology , Panax/metabolism , Phytochemicals/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Polysaccharides/isolation & purification , RAW 264.7 Cells
8.
Int J Biol Macromol ; 133: 76-85, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-30981779

ABSTRACT

Frankincense has a long history in religious, cultural, and medicinal use. In this study polysaccharides were extracted from frankincense from Boswellia carterii. The polysaccharides were purified by anion exchange chromatography on a DEAE-Sepharose Fast Flow 16/10 FPLC column. Six fractions were obtained and the three most active immunomodulatory fractions were further purified by size exclusion chromatography on a Superdex-200 column. The composition showed the monosaccharides present were predominantly galactose, arabinose, and glucuronic acid along with small amounts of rhamnose and glucose. The monosaccharide composition and glycosyl linkage analysis revealed the polysaccharides belong to the type II arabinogalactans. Fourier-transform infrared spectroscopy and bicinchoninic acid assay showed that the amount of protein in the samples was <1 wt%. One-dimensional 1H NMR were consistent with high molecular weight compounds. The monosaccharides were primarily in the ß conformation. The three fractions exhibited an immunostimulatory effect on RAW 264.7 murine macrophage cells. The most active immunostimulatory fraction FA2, stimulated a range of pro-inflammatory mediators including iNOS, NO, TNF-α, and IL-6 in RAW 264.7 cells. The fractions were effective in proliferating primary murine splenocytes. The results indicate that the polysaccharides isolated from frankincense have the potential to be used as an immunological stimulant or nutraceutical.


Subject(s)
Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacology , Frankincense/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Adjuvants, Immunologic/isolation & purification , Animals , Glycosylation , Macrophages/drug effects , Macrophages/metabolism , Mice , Molecular Weight , Nitric Oxide/metabolism , Polysaccharides/isolation & purification , RAW 264.7 Cells , Tumor Necrosis Factor-alpha/metabolism
9.
Article in English | MEDLINE | ID: mdl-30373804

ABSTRACT

Stagnation in antimicrobial development has led to a serious threat to public health because some Acinetobacter baumannii infections have become untreatable. New therapeutics with alternative mechanisms of action to combat A. baumannii are therefore necessary to treat these infections. To this end, the virulence of A. baumannii isolates with various antimicrobial susceptibilities was assessed when the isolates were treated with miltefosine, a phospholipase C inhibitor. Phospholipase C activity is a contributor to A. baumannii virulence associated with hemolysis, cytolysis of A549 human alveolar epithelial cells, and increased mortality in the Galleria mellonella experimental infection model. While the effects on bacterial growth were variable among strains, miltefosine treatment significantly reduced both the hemolytic and cytolytic activity of all treated A. baumannii strains. Additionally, scanning electron microscopy of polarized A549 cells infected with bacteria of the A. baumannii ATCC 19606T strain or the AB5075 multidrug-resistant isolate showed a decrease in A549 cell damage with a concomitant increase in the presence of A549 surfactant upon administration of miltefosine. The therapeutic ability of miltefosine was further supported by the results of G. mellonella infections, wherein miltefosine treatment of animals infected with ATCC 19606T significantly decreased mortality. These data demonstrate that inhibition of phospholipase C activity results in the overall reduction of A. baumannii virulence in both in vitro and in vivo models, making miltefosine a viable option for the treatment of A. baumannii infections, particularly those caused by multidrug-resistant isolates.


Subject(s)
Acinetobacter Infections/drug therapy , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/pathogenicity , Anti-Bacterial Agents/therapeutic use , Phosphorylcholine/analogs & derivatives , A549 Cells , Acinetobacter baumannii/genetics , Acinetobacter baumannii/isolation & purification , Animals , Cell Line , Drug Resistance, Multiple, Bacterial/genetics , Humans , Microbial Sensitivity Tests , Moths/microbiology , Phosphorylcholine/therapeutic use , Type C Phospholipases/antagonists & inhibitors , Virulence/drug effects
10.
Int J Antimicrob Agents ; 51(5): 752-761, 2018 May.
Article in English | MEDLINE | ID: mdl-29410367

ABSTRACT

The aminoglycoside, 6'-N-acetyltransferase type Ib [AAC(6')-Ib] is the most widely distributed enzyme among AAC(6')-I-producing Gram-negative pathogens and confers resistance to clinically relevant aminoglycosides, including amikacin. This enzyme is therefore an ideal target for enzymatic inhibitors that could overcome resistance to aminoglycosides. The search for inhibitors was carried out using mixture-based combinatorial libraries, the scaffold ranking approach, and the positional scanning strategy. A library with high inhibitory activity had pyrrolidine pentamine scaffold and was selected for further analysis. This library contained 738,192 compounds with functionalities derived from 26 different amino acids (R1, R2 and R3) and 42 different carboxylic acids (R4) in four R-group functionalities. The most active compounds all contained S-phenyl (R1 and R3) and S-hydromethyl (R2) functionalities at three locations and differed at the R4 position. The compound containing 3-phenylbutyl at R4 (compound 206) was a robust enzymatic inhibitor in vitro, in combination with amikacin it potentiated the inhibition of growth of three resistant bacteria in culture, and it improved survival when used as treatment of Galleria mellonella infected with aac(6')-Ib-harboring Klebsiella pneumoniae and Acinetobacter baumannii strains.


Subject(s)
Acetyltransferases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Small Molecule Libraries/pharmacology , Acinetobacter baumannii/drug effects , Amino Acids/chemistry , Animals , Anti-Bacterial Agents/chemistry , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Escherichia coli/drug effects , HEK293 Cells , Humans , Klebsiella pneumoniae/drug effects , Pyrrolidines/chemistry , Small Molecule Libraries/chemistry , Structure-Activity Relationship
11.
PLoS One ; 13(1): e0190599, 2018.
Article in English | MEDLINE | ID: mdl-29309434

ABSTRACT

The capacity of Acinetobacter baumannii to persist and cause infections depends on its interaction with abiotic and biotic surfaces, including those found on medical devices and host mucosal surfaces. However, the extracellular stimuli affecting these interactions are poorly understood. Based on our previous observations, we hypothesized that mucin, a glycoprotein secreted by lung epithelial cells, particularly during respiratory infections, significantly alters A. baumannii's physiology and its interaction with the surrounding environment. Biofilm, virulence and growth assays showed that mucin enhances the interaction of A. baumannii ATCC 19606T with abiotic and biotic surfaces and its cytolytic activity against epithelial cells while serving as a nutrient source. The global effect of mucin on the physiology and virulence of this pathogen is supported by RNA-Seq data showing that its presence in a low nutrient medium results in the differential transcription of 427 predicted protein-coding genes. The reduced expression of ion acquisition genes and the increased transcription of genes coding for energy production together with the detection of mucin degradation indicate that this host glycoprotein is a nutrient source. The increased expression of genes coding for adherence and biofilm biogenesis on abiotic and biotic surfaces, the degradation of phenylacetic acid and the production of an active type VI secretion system further supports the role mucin plays in virulence. Taken together, our observations indicate that A. baumannii recognizes mucin as an environmental signal, which triggers a response cascade that allows this pathogen to acquire critical nutrients and promotes host-pathogen interactions that play a role in the pathogenesis of bacterial infections.


Subject(s)
Acinetobacter baumannii/pathogenicity , Genes, Bacterial , Mucins/metabolism , Virulence/genetics , A549 Cells , Acinetobacter baumannii/genetics , Acinetobacter baumannii/growth & development , Biofilms , Host-Pathogen Interactions , Humans , Microscopy, Electron, Transmission , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, RNA , Transcriptome
12.
Genome Announc ; 5(18)2017 May 04.
Article in English | MEDLINE | ID: mdl-28473387

ABSTRACT

Gardnerella vaginalis is a Gram-variable bacterium associated with bacterial vaginosis, a common vaginal inflammation in women of reproductive age. This study reports the whole-genome sequencing for the clinical isolate strain ATCC 49145. The draft genome is composed of 21 contigs containing 1,325 protein-coding sequences, 45 tRNAs and a single tmRNA (SsrA).

13.
Article in English | MEDLINE | ID: mdl-28421168

ABSTRACT

Genetic and functional studies showed that some components of the Acinetobacter baumannii ATCC 17978 A1S_0112-A1S_0119 gene cluster are critical for biofilm biogenesis and surface motility. Recently, our group has shown that the A1S_0114 gene was involved in biofilm formation, a process related with pathogenesis. Confirming our previous results, microscopy images revealed that the ATCC 17978 Δ0114 derivative lacking this gene was unable to form a mature biofilm structure. Therefore, other bacterial phenotypes were analyzed to determine the role of this gene in the pathogenicity of A. baumannii ATCC 17978. The interaction of the ATCC 17978 parental strain and the Δ0114 mutant with A549 human alveolar epithelial cells was quantified revealing that the A1S_0114 gene was necessary for proper attachment to A549 cells. This dependency correlates with the negative effect of the A1S_0114 deletion on the expression of genes coding for surface proteins and pili-assembly systems, which are known to play a role in adhesion. Three different experimental animal models, including vertebrate and invertebrate hosts, confirmed the role of the A1S_0114 gene in virulence. All of the experimental infection assays indicated that the virulence of the ATCC 17978 was significantly reduced when this gene was inactivated. Finally, we discovered that the A1S_0114 gene was involved in the production of a small lipopeptide-like compound herein referred to as acinetin 505 (Ac-505). Ac-505 was isolated from ATCC 17978 spent media and its chemical structure was interpreted by mass spectrometry. Overall, our observations provide novel information on the role of the A1S_0114 gene in A. baumannii's pathobiology and lay the foundation for future work to determine the mechanisms by which Ac-505, or possibly an Ac-505 precursor, could execute critical functions as a secondary metabolite.


Subject(s)
Acinetobacter baumannii/genetics , Acinetobacter baumannii/pathogenicity , Bacterial Adhesion , Epithelial Cells/microbiology , Host-Pathogen Interactions , Virulence Factors/genetics , Acinetobacter Infections/microbiology , Acinetobacter Infections/pathology , Acinetobacter baumannii/physiology , Adhesins, Bacterial/genetics , Animals , Biofilms/growth & development , Caenorhabditis elegans , Cell Line , Disease Models, Animal , Female , Gene Deletion , Humans , Lepidoptera , Mice, Inbred BALB C , Microscopy , Virulence
14.
Int Immunopharmacol ; 43: 116-128, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27988459

ABSTRACT

Suppressing cytokine responses has frequently been shown to have promising therapeutic effects for many chronic inflammatory and autoimmune diseases. However, the severe side effects associated with the long-term use of current treatments, such as allergic reactions and increased risk of stroke, have focused attention towards the targeting of intracellular signaling mechanisms, such as NF-κB, that regulate inflammation. We synthesized a series of non-natural aurone derivatives and investigated their ability to suppress pro-inflammatory signaling in human monocyte (THP-1) and murine macrophage-like (RAW 267.4) cell lines. One of these derivatives, (Z)-2-((5-(hydroxymethyl) furan-2-yl) methylene) benzofuran-3(2H)-one (aurone 1), was found to inhibit LPS-induced secretion of the pro-inflammatory cytokines, tumor-necrosis factor α (TNFα), interleukin 1ß (IL-1ß), and IL-8 by THP-1 cells. To investigate the mechanism, we probed the effect of aurone 1 on LPS-induced MAPK and NF-κB signaling in both THP-1 and RAW264.7. While aurone 1 pre-treatment had no effect on the phosphorylation of ERK, JNK, or p38 MAPK, it strongly suppressed activation of IKK-ß, as indicated by attenuation of Ser176/180 phosphorylation, resulting in decreased phosphorylation of p65 (ser536) as well as phosphorylation (ser32) and degradation of IκBα. Consistent with this, aurone 1 significantly reduced LPS-stimulated nuclear translocation of p65-containing NF-κB transcription factors and expression of an mCherry reporter of TNFα gene transactivation in RAW264.7 cells. Inhibition of TNFα expression at the transcription level was also demonstrated in THP-1 by qRT-PCR. In addition to its effects on cytokine expression, aurone 1 pre-treatment decreased expression of iNOS, a bona fide NF-κB target gene and marker of macrophage M1 polarization, resulting in decreased NO production in RAW264.7 cells. Together, these data indicate that aurone 1 may have the potential to function as a pharmacological agent for the treatment of chronic inflammation disorders.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Benzofurans/pharmacology , Inflammation/drug therapy , Macrophages/drug effects , Monocytes/drug effects , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Benzofurans/chemical synthesis , Cytokines/metabolism , Humans , Inflammation Mediators/metabolism , Lipopolysaccharides/immunology , Macrophages/immunology , Mice , Monocytes/immunology , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , RAW 264.7 Cells , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/genetics
15.
PLoS One ; 11(11): e0167068, 2016.
Article in English | MEDLINE | ID: mdl-27875572

ABSTRACT

Acinetobacter baumannii is an opportunistic Gram-negative pathogen that causes a wide range of infections including pneumonia, septicemia, necrotizing fasciitis and severe wound and urinary tract infections. Analysis of A. baumannii representative strains grown in Chelex 100-treated medium for hemolytic activity demonstrated that this pathogen is increasingly hemolytic to sheep, human and horse erythrocytes, which interestingly contain increasing amounts of phosphatidylcholine in their membranes. Bioinformatic, genetic and functional analyses of 19 A. baumannii isolates showed that the genomes of each strain contained two phosphatidylcholine-specific phospholipase C (PC-PLC) genes, which were named plc1 and plc2. Accordingly, all of these strains were significantly hemolytic to horse erythrocytes and their culture supernatants tested positive for PC-PLC activity. Further analyses showed that the transcriptional expression of plc1 and plc2 and the production of phospholipase and thus hemolytic activity increased when bacteria were cultured under iron-chelation as compared to iron-rich conditions. Testing of the A. baumannii ATCC 19606T plc1::aph-FRT and plc2::aph isogenic insertion derivatives showed that these mutants had a significantly reduced PC-PLC activity as compared to the parental strain, while testing of plc1::ermAM/plc2::aph demonstrated that this double PC-PLC isogenic mutant expressed significantly reduced cytolytic and hemolytic activity. Interestingly, only plc1 was shown to contribute significantly to A. baumannii virulence using the Galleria mellonella infection model. Taken together, our data demonstrate that both PLC1 and PLC2, which have diverged from a common ancestor, play a concerted role in hemolytic and cytolytic activities; although PLC1 seems to play a more critical role in the virulence of A. baumannii when tested in an invertebrate model. These activities would provide access to intracellular iron stores this pathogen could use during growth in the infected host.


Subject(s)
Acinetobacter Infections/enzymology , Acinetobacter baumannii/enzymology , Acinetobacter baumannii/pathogenicity , Bacterial Proteins/metabolism , Genome, Bacterial , Type C Phospholipases/metabolism , A549 Cells , Acinetobacter Infections/genetics , Acinetobacter baumannii/genetics , Animals , Bacterial Proteins/genetics , Cattle , Disease Models, Animal , Horses , Humans , Sheep , Type C Phospholipases/genetics
16.
Genome Announc ; 4(4)2016 Aug 25.
Article in English | MEDLINE | ID: mdl-27563036

ABSTRACT

Acinetobacter baumannii is a Gram-negative bacterium capable of causing hospital-acquired infections that has been grouped with Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species as ESKAPE pathogens because of their extensive drug resistance phenotypes and increasing risk to human health. Twenty-four multidrug-resistant A. baumannii strains isolated from wounded military personnel were sequenced and annotated.

17.
Genome Announc ; 4(4)2016 Aug 11.
Article in English | MEDLINE | ID: mdl-27516515

ABSTRACT

Members of the Escherichia coli bacterial family have been grouped as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens because of their extensive drug resistance phenotypes and increasing threat to human health. The genomes of six extended-spectrum ß-lactamase (ESBL)-producing E. coli strains isolated from wounded military personnel were sequenced and annotated.

18.
Genome Announc ; 4(4)2016 Aug 11.
Article in English | MEDLINE | ID: mdl-27516516

ABSTRACT

Pseudomonas aeruginosa, a Gram-negative bacterium that causes severe hospital-acquired infections, is grouped as an ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogen because of its extensive drug resistance phenotypes and effects on human health worldwide. Five multidrug resistant P. aeruginosa strains isolated from wounded military personnel were sequenced and annotated in this work.

19.
Genome Announc ; 4(1)2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26893424

ABSTRACT

"Candidatus Berkiella cookevillensis" and "Candidatus Berkiella aquae" are obligate intranuclear endosymbionts of freshwater amoebae. Here, we present the draft genome sequences of these two bacteria, with total sizes of 2,990,361 bp and 3,626,027 bp, respectively.

20.
Antimicrob Agents Chemother ; 59(12): 7657-65, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26416873

ABSTRACT

A paucity of effective, currently available antibiotics and a lull in antibiotic development pose significant challenges for treatment of patients with multidrug-resistant (MDR) Acinetobacter baumannii infections. Thus, novel therapeutic strategies must be evaluated to meet the demands of treatment of these often life-threatening infections. Accordingly, we examined the antibiotic activity of gallium protoporphyrin IX (Ga-PPIX) against a collection of A. baumannii strains, including nonmilitary and military strains and strains representing different clonal lineages and isolates classified as susceptible or MDR. Susceptibility testing demonstrated that Ga-PPIX inhibits the growth of all tested strains when cultured in cation-adjusted Mueller-Hinton broth, with a MIC of 20 µg/ml. This concentration significantly reduced bacterial viability, while 40 µg/ml killed all cells of the A. baumannii ATCC 19606(T) and ACICU MDR isolate after 24-h incubation. Recovery of ATCC 19606(T) and ACICU strains from infected A549 human alveolar epithelial monolayers was also decreased when the medium was supplemented with Ga-PPIX, particularly at a 40-µg/ml concentration. Similarly, the coinjection of bacteria with Ga-PPIX increased the survival of Galleria mellonella larvae infected with ATCC 19606(T) or ACICU. Ga-PPIX was cytotoxic only when monolayers or larvae were exposed to concentrations 16-fold and 1,250-fold higher than those showing antibacterial activity, respectively. These results indicate that Ga-PPIX could be a viable therapeutic option for treatment of recalcitrant A. baumannii infections regardless of the resistance phenotype, clone lineage, time and site of isolation of strains causing these infections and their iron uptake phenotypes or the iron content of the media.


Subject(s)
Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , Coordination Complexes/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Gallium/pharmacology , Protoporphyrins/pharmacology , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Acinetobacter baumannii/growth & development , Acinetobacter baumannii/metabolism , Animals , Anti-Bacterial Agents/chemistry , Cell Line, Tumor , Coordination Complexes/chemistry , Epithelial Cells/drug effects , Epithelial Cells/microbiology , Gallium/chemistry , Humans , Iron/metabolism , Larva/drug effects , Larva/microbiology , Microbial Sensitivity Tests , Microbial Viability/drug effects , Moths/drug effects , Moths/microbiology , Phenotype , Protoporphyrins/chemistry , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...