Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(4): e0300021, 2024.
Article in English | MEDLINE | ID: mdl-38635818

ABSTRACT

Trypanosoma cruzi (T. cruzi) is the causative agent of Chagas' disease, a parasitic infection responsible for significant morbidity and mortality in Latin America. The current treatments have many serious drawbacks and new drugs are urgently required. In the UK, T. cruzi is classified by the Advisory Committee on Dangerous Pathogens (ACDP) as a Hazard Group 3 organism and strict safety practices must be adhered to when handling this pathogen in the laboratory. Validated inactivation techniques are required for safe T. cruzi waste disposal and removal from Containment Level 3 (CL3) facilities for storage, transportation and experimental analysis. Here we assess three T. cruzi. inactivation methods. These include three freeze-thaw cycles, chemical inactivation with Virkon disinfectant, and air drying on Whatman FTA cards (A, B, C, Elute) and on a Mitra microsampling device. After each treatment parasite growth was monitored for 4-6 weeks by microscopic examination. Three freeze-thaw cycles were sufficient to inactivate all T. cruzi CLBrener Luc life cycle stages and Silvio x10/7 A1 large epimastigote cell pellets up to two grams wet weight. Virkon treatment for one hour inactivated T. cruzi Silvio x10/7 subclone A1 and CLBrener Luc both in whole blood and cell culture medium when incubated at a final concentration of 2.5% Virkon, or at ≥1% Virkon when in tenfold excess of sample volume. Air drying also inactivated T. cruzi CLBrener Luc spiked blood when dried on FTA A, B or Elute cards for ≥30 minutes and on a Mitra Microsampler for two hours. However, T. cruzi CLBrener Luc were not inactivated on FTA C cards when dried for up to two hours. These experimentally confirmed conditions provide three validated T. cruzi inactivation methods which can be applied to other related ACDP Hazard Group 2-3 kinetoplastid parasites.


Subject(s)
Aminopyridines , Chagas Disease , Sulfuric Acids , Trypanosoma cruzi , Humans , Chagas Disease/parasitology , Peroxides
2.
Biochem J ; 391(Pt 2): 425-32, 2005 Oct 15.
Article in English | MEDLINE | ID: mdl-16008527

ABSTRACT

Trypanothione plays a pivotal role in defence against chemical and oxidant stress, thiol redox homoeostasis, ribonucleotide metabolism and drug resistance in parasitic kinetoplastids. In Trypanosoma brucei, trypanothione is synthesized from glutathione and spermidine by a single enzyme, TryS (trypanothione synthetase), with glutathionylspermidine as an intermediate. To examine the physiological roles of trypanothione, tetracycline-inducible RNA interference was used to reduce expression of TRYS. Following induction, TryS protein was reduced >10-fold and growth rate was reduced 2-fold, with concurrent 5-10-fold decreases in glutathionylspermidine and trypanothione and an up to 14-fold increase in free glutathione content. Polyamine levels were not significantly different from non-induced controls, and neither was the intracellular thiol redox potential, indicating that these factors are not responsible for the growth defect. Compensatory changes in other pathway enzymes were associated with prolonged suppression of TryS: an increase in trypanothione reductase and gamma-glutamylcysteine synthetase, and a transient decrease in ornithine decarboxylase. Depleted trypanothione levels were associated with increases in sensitivity to arsenical, antimonial and nitro drugs, implicating trypanothione metabolism in their mode of action. Escape mutants arose after 2 weeks of induction, with all parameters, including growth, returning to normal. Selective inhibitors of TryS are required to fully validate this novel drug target.


Subject(s)
Amide Synthases/deficiency , Amide Synthases/genetics , Glutathione/analogs & derivatives , RNA Interference , Spermidine/analogs & derivatives , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/metabolism , Animals , Cell Line , Drug Resistance , Drug Synergism , Gene Expression Regulation, Enzymologic , Glutathione/biosynthesis , Glutathione/metabolism , Mutation , Oxidation-Reduction , Phenotype , Polyamines/metabolism , Spermidine/biosynthesis , Spermidine/metabolism , Sulfhydryl Compounds/metabolism , Time Factors , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/growth & development
3.
Mol Biochem Parasitol ; 131(1): 25-33, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12967709

ABSTRACT

Trypanothione [N(1),N(8)-bis(glutathionyl)spermidine] plays a central role in defence against oxidant damage, ribonucleotide metabolism and in resistance to certain drugs in trypanosomatids. In Crithidia fasciculata, synthesis of trypanothione involves sequential conjugation of two molecules of glutathione (GSH) to spermidine by two enzymes: glutathionylspermidine synthetase (GspS; EC 6.3.1.8) and trypanothione synthetase (TryS; EC 6.3.1.9), whereas in Trypanosoma cruzi both steps are catalysed by an unusual TryS with broad substrate specificity. To determine which route operates in T. brucei, we have cloned and expressed a single copy gene with similarity to C. fasciculata and T. cruzi TRYS. The purified recombinant protein catalyses formation of trypanothione from either spermidine and GSH, or glutathionylspermidine and GSH. The enzyme displays high substrate inhibition with GSH as variable substrate (apparent K(m)=56 microM, K(i)(s)=37 microM, k(cat)=2.9s(-1)). At a fixed subsaturating GSH concentration (100 microM), the enzyme obeys simple hyperbolic kinetics yielding apparent K(m) values for spermidine, glutathionylspermidine and MgATP of 38, 2.4, and 7.1 microM, respectively. Recombinant TryS can also catalyse conversion of spermine to glutathionylspermine and bis(glutathionyl)spermine, as recently reported for T. cruzi. The enzyme has amidase activity that can be inhibited by iodoacetamide. Studies using GSH and polyamine analogues identified GSH as the critical determinant for recognition by the amidase domain. Thus, the biosynthesis and degradation of trypanothione are similar in African and American trypanosomes, and different from the insect trypanosomatid, C. fasciculata.


Subject(s)
Amide Synthases , Glutathione/analogs & derivatives , Spermidine/analogs & derivatives , Trypanosoma brucei brucei/enzymology , Amide Synthases/chemistry , Amide Synthases/genetics , Amide Synthases/metabolism , Amidohydrolases/metabolism , Amino Acid Sequence , Animals , Cloning, Molecular , Escherichia coli/enzymology , Escherichia coli/genetics , Glutathione/biosynthesis , Glutathione/metabolism , Kinetics , Molecular Sequence Data , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Analysis, DNA , Spermidine/biosynthesis , Spermidine/metabolism , Substrate Specificity , Trypanosoma brucei brucei/genetics
4.
Antimicrob Agents Chemother ; 47(10): 3368-70, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14506061

ABSTRACT

DNA damage associated with the trypanocidal activity of megazol [2-amino-5-(1-methyl-5-nitro-2-imidazolyl)-1,3,4-thiadiazole] was shown in experiments in which DNA repair-deficient RAD51(-/-) Trypanosoma brucei mutants were found to be hypersensitive to the drug. Parasites resistant to megazol were selected and showed modest cross-resistance to other trypanocides, although neither drug efflux nor changes to intracellular thiols correlated with resistance.


Subject(s)
DNA Damage , Thiadiazoles/pharmacology , Trypanocidal Agents/pharmacology , Animals , DNA-Binding Proteins/genetics , Drug Resistance, Multiple/drug effects , Drug Resistance, Multiple/genetics , Inhibitory Concentration 50 , Mutation , Thiadiazoles/chemistry , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/genetics
5.
J Biol Chem ; 278(30): 27612-9, 2003 Jul 25.
Article in English | MEDLINE | ID: mdl-12750367

ABSTRACT

Trypanosomatids differ from other cells in their ability to conjugate glutathione with the polyamine spermidine to form the antioxidant metabolite trypanothione (N1,N8-bis(glutathionyl)spermidine). In Trypanosoma cruzi, trypanothione is synthesized by an unusual trypanothione synthetase/amidase (TcTryS) that forms both glutathionylspermidine and trypanothione. Because T. cruzi is unable to synthesize putrescine and is dependent on uptake of exogenous polyamines by high affinity transporters, synthesis of trypanothione may be circumstantially limited by lack of spermidine. Here, we show that the parasite is able to circumvent the potential shortage of spermidine by conjugating glutathione with other physiological polyamine substrates from exogenous sources (spermine, N8-acetylspermidine, and N-acetylspermine). Novel thiols were purified from epimastigotes, and structures were determined by matrix-assisted laser desorption ionization time-of-flight analysis to be N1,N12-bis(glutathionyl)spermine, N1-glutathionyl-N8-acetylspermidine, and N1-glutathionyl-N12-acetylspermine, respectively. Structures were confirmed by enzymatic synthesis with recombinant TcTryS, which catalyzes formation of these compounds with kinetic parameters equivalent to or better than those of spermidine. Despite containing similar amounts of spermine and spermidine, the epimastigotes, trypomastigotes, and amastigotes of T. cruzi preferentially synthesized trypanothione. Bis(glutathionyl)spermine disulfide is a physiological substrate of recombinant trypanothione reductase, comparable to trypanothione and homotrypanothione disulfides. The broad substrate specificity of TcTryS could be exploited in the design of polyamine-based inhibitors of trypanothione metabolism.


Subject(s)
Glutathione/analogs & derivatives , Glutathione/chemistry , Spermidine/analogs & derivatives , Spermidine/chemistry , Spermine/chemistry , Trypanosoma cruzi/metabolism , Animals , Chromatography, High Pressure Liquid , Kinetics , Mass Spectrometry , Models, Chemical , Polyamines/chemistry , Recombinant Proteins/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spermine/analogs & derivatives , Substrate Specificity , Sulfhydryl Compounds , Time Factors
6.
J Biol Chem ; 277(39): 35853-61, 2002 Sep 27.
Article in English | MEDLINE | ID: mdl-12121990

ABSTRACT

Protozoa of the order Kinetoplastida differ from other organisms in their ability to conjugate glutathione (l-gamma-glutamyl-cysteinyl-glycine) and spermidine to form trypanothione [N(1),N(8)-bis(glutathionyl)spermidine], a metabolite involved in defense against chemical and oxidant stress and other biosynthetic functions. In Crithidia fasciculata, trypanothione is synthesized from GSH and spermidine via the intermediate glutathionylspermidine in two distinct ATP-dependent reactions catalyzed by glutathionylspermidine synthetase (GspS; EC ) and trypanothione synthetase (TryS; EC ), respectively. Here we have cloned a single copy gene (TcTryS) from Trypanosoma cruzi encoding a protein with 61% sequence identity with CfTryS but only 31% with CfGspS. Saccharomyces cerevisiae transformed with TcTryS were able to synthesize glutathionylspermidine and trypanothione, suggesting that this enzyme is able to catalyze both biosynthetic steps, unlike CfTryS. When cultures were supplemented with aminopropylcadaverine, yeast transformants contained glutathionylaminopropylcadaverine and homotrypanothione [N(1),N(9)-bis(glutathionyl)aminopropylcadaverine], metabolites that have been previously identified in T. cruzi, but not in C. fasciculata. Kinetic studies on recombinant TcTryS purified from Escherichia coli revealed that the enzyme displays high-substrate inhibition with glutathione (K(m) and K(i) of 0.57 and 1.2 mm, respectively, and k(cat) of 3.4 s(-1)), but obeys Michaelis-Menten kinetics with spermidine, aminopropylcadaverine, glutathionylspermidine, and MgATP as variable substrate. The recombinant enzyme possesses weak amidase activity and can hydrolyze trypanothione, homotrypanothione, or glutathionylspermidine to glutathione and the corresponding polyamine.


Subject(s)
Glutathione/analogs & derivatives , Glutathione/biosynthesis , Glutathione/metabolism , Spermidine/analogs & derivatives , Spermidine/biosynthesis , Spermidine/metabolism , Trypanosoma cruzi/enzymology , Adenosine Triphosphate/metabolism , Amide Synthases/metabolism , Amino Acid Sequence , Animals , Blotting, Southern , Ca(2+) Mg(2+)-ATPase/metabolism , Catalysis , Chromatography, High Pressure Liquid , Cloning, Molecular , Crithidia/metabolism , DNA/metabolism , Dose-Response Relationship, Drug , Electrophoresis, Polyacrylamide Gel , Escherichia coli/enzymology , Hydrogen-Ion Concentration , Hydrolysis , Ions , Kinetics , Models, Chemical , Models, Genetic , Molecular Sequence Data , Polyamines/metabolism , Saccharomyces cerevisiae/metabolism , Sulfhydryl Compounds/metabolism , Time Factors
7.
Biochem J ; 364(Pt 3): 679-86, 2002 Jun 15.
Article in English | MEDLINE | ID: mdl-12049631

ABSTRACT

Trypanothione [N1,N8-bis(glutathionyl)spermidine] is a unique metabolite found only in trypanosomatids, where it subsumes many of the functions of GSH in other organisms. In Crithidia fasciculata, two distinct ATP-dependent ligases, glutathionylspermidine synthetase (GspS; EC 6.3.1.8) and trypanothione synthetase (TryS; EC 6.3.1.9), are involved in the synthesis of trypanothione from GSH and spermidine. Both enzymes have been cloned previously, but expression in Escherichia coli produced insoluble and inactive protein. Here we report on the successful expression of soluble (His)6-tagged C. fasciculata GspS in E. coli. Following purification using nickel-chelating affinity chromatography, the tag sequence was removed and the enzyme purified to homogeneity by anion-exchange chromatography. The kinetic parameters of the recombinant enzyme have been determined using a coupled enzyme assay and also by HPLC analysis of end-product formation. Under optimal conditions (0.1 M K+-Hepes, pH 7.3) GspS has synthetase activity with apparent K(m) values for GSH, spermidine and MgATP of 242, 59 and 114 microM respectively, and a k(cat) of 15.5 s(-1). Glutathionylspermidine is formed as end product and the enzyme lacks TryS activity. Like E. coli GspS, the recombinant enzyme also possesses amidase activity (EC 3.5.1.78), hydrolysing glutathionylspermidine to GSH and spermidine with a k(cat) of 0.38 s(-1) and a K(m) of 500 microM. GspS can also hydrolyse trypanothione at about 1.5% of the rate with glutathionylspermidine. A single amino acid mutation (Cys-79-->Ala) is shown to ablate the amidase activity without affecting the synthetase activity.


Subject(s)
Amide Synthases/metabolism , Crithidia fasciculata/enzymology , Amide Synthases/chemistry , Animals , Circular Dichroism , Cloning, Molecular , Escherichia coli , Hydrogen-Ion Concentration , Kinetics , Molecular Sequence Data , Polymerase Chain Reaction , Protein Conformation , Recombinant Proteins/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...