Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Nanotechnol ; 6: 2310-8, 2015.
Article in English | MEDLINE | ID: mdl-26734521

ABSTRACT

A novel and facile method was developed to produce hybrid graphene oxide (GO)-polyelectrolyte (PE) capsules using erythrocyte cells as templates. The capsules are easily produced through the layer-by-layer technique using alternating polyelectrolyte layers and GO sheets. The amount of GO and therefore its coverage in the resulting capsules can be tuned by adjusting the concentration of the GO dispersion during the assembly. The capsules retain the approximate shape and size of the erythrocyte template after the latter is totally removed by oxidation with NaOCl in water. The PE/GO capsules maintain their integrity and can be placed or located on other surfaces such as in a device. When the capsules are dried in air, they collapse to form a film that is approximately twice the thickness of the capsule membrane. AFM images in the present study suggest a film thickness of approx. 30 nm for the capsules in the collapsed state implying a thickness of approx. 15 nm for the layers in the collapsed capsule membrane. The polyelectrolytes used in the present study were polyallylamine hydrochloride (PAH) and polystyrenesulfonate sodium salt (PSS). Capsules where characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic light scattering (DLS) and Raman microscopy, the constituent layers by zeta potential and GO by TEM, XRD, and Raman and FTIR spectroscopies.

2.
ACS Appl Mater Interfaces ; 1(11): 2502-8, 2009 Nov.
Article in English | MEDLINE | ID: mdl-20356120

ABSTRACT

This research demonstrates that a nylon nanofiber (NNF) mat can be an effective mechanical reinforcement to polyaniline (PANI) thin films. Nanofibers of ca. 250 nm diameter were produced by electrospinning of a nylon 6 solution in formic acid. Scanning electron microscopy showed that the solution impregnation method utilized was effective to embed the nanofibers into the PANI matrix. The effectiveness of NNFs as a mechanical reinforcement of a PANI thin film was assessed via dynamic mechanical analysis in tension mode. The as-cast PANI films displayed a tensile dynamic modulus, E', of ca. 0.65 GPa at room temperature. Scanning in the temperature showed that the PANI film has a usage temperature of up to about 80 degrees C, with this being limited by its glass transition temperature, and over this temperature range, the elastic modulus was nearly independent of the temperature. On the other hand, the PANI-NNF composite displayed a significantly higher tensile modulus at room temperature (1.1 GPa) and its usage temperature was extended up to just over 200 degrees C, with this being limited by the melting transition of nylon 6 (at 220 degrees C). The results therefore showed that the NNF mat increased the usage temperature of PANI films over 100 degrees C, opening up applications for PANI membranes.

3.
Langmuir ; 23(1): 8-12, 2007 Jan 02.
Article in English | MEDLINE | ID: mdl-17190477

ABSTRACT

Polyaniline colloids were prepared by enzymatic polymerization using chitosan and poly(N-isopropylacrylamide) as steric stabilizers. The resulting nanoparticles undergo flocculation by changing the pH or temperature of the aqueous dispersions. The environmentally responsive behavior of these colloids contrasts with that of polyaniline colloids synthesized using poly(vinyl alcohol) as the steric stabilizer. The colloid size was a function of the steric stabilizers and ranged from approximately 50 nm for polyaniline particles prepared in the presence of chitosan and partially hydrolyzed poly(vinyl alcohol) up to 350 nm for the particles synthesized using poly(N-isopropylacrylamide). UV-visible and Fourier transform infrared spectroscopic studies indicate that polyaniline colloids are spectroscopically similar to those obtained by traditional dispersion polymerization of aniline by chemical oxidation. These polyaniline colloids have potential applications in thermochromic windows and smart fluids.

SELECTION OF CITATIONS
SEARCH DETAIL
...