Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Oncotarget ; 8(51): 88421-88436, 2017 Oct 24.
Article in English | MEDLINE | ID: mdl-29179446

ABSTRACT

Cancer cell invasion is an obligatory step for metastatic dissemination that contributes to rapid relapse and a poorer survival in triple negative breast cancer (TNBC) patients. Development of novel therapeutic strategies to block tumor invasion is an unmet need in the treatment of cancer. We reported that the selective inhibition of the PAH2 domain of SIN3A protein function markedly suppressed metastatic dissemination to the lungs in TNBC xenograft bearing mice. Here, we show that TNBC cell lines treated with Sin3 interaction domain (SID) decoy peptides that bind to PAH2 display a strong in vitro inhibition of transwell invasion. This is accompanied by actin cytoskeleton reorganization with increased cortical actin deposition and downregulation of known Wnt target genes that are associated with epithelial to mesenchymal transition (EMT) and cancer cell invasion. Wnt pathway inhibition by SID decoy peptide was confirmed by decreased Wnt reporter activity and altered cytoplasmic localization of nuclear ß-catenin. TGIF1, a transcription factor that modulates Wnt signaling and known to interact with the PAH2 domain of SIN3A, can be dissociated from the SIN3A complex by SID decoys. TGIF1 knockdown inhibits WNT target genes and in vitro cell invasion suggesting that TGIF1 might be a key target of the SID decoys to block tumor invasion. Taken together, targeting SIN3 function using SID decoys is a novel strategy to reverse invasion and the EMT program in TNBC translating into the inhibition of metastasis dissemination and eradication of residual disease.

2.
Oncotarget ; 6(33): 34087-105, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26460951

ABSTRACT

Triple negative breast cancer (TNBC) is characterized by a poorly differentiated phenotype and limited treatment options. Aberrant epigenetics in this subtype represent a potential therapeutic opportunity, but a better understanding of the mechanisms contributing to the TNBC pathogenesis is required. The SIN3 molecular scaffold performs a critical role in multiple cellular processes, including epigenetic regulation, and has been identified as a potential therapeutic target. Using a competitive peptide corresponding to the SIN3 interaction domain of MAD (Tat-SID), we investigated the functional consequences of selectively blocking the paired amphipathic α-helix (PAH2) domain of SIN3. Here, we report the identification of the SID-containing adaptor PF1 as a factor required for maintenance of the TNBC stem cell phenotype and epithelial-to-mesenchymal transition (EMT). Tat-SID peptide blocked the interaction between SIN3A and PF1, leading to epigenetic modulation and transcriptional downregulation of TNBC stem cell and EMT markers. Importantly, Tat-SID treatment also led to a reduction in primary tumor growth and disseminated metastatic disease in vivo. In support of these findings, knockdown of PF1 expression phenocopied treatment with Tat-SID both in vitro and in vivo. These results demonstrate a critical role for a complex containing SIN3A and PF1 in TNBC and provide a rational for its therapeutic targeting.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Epithelial-Mesenchymal Transition/physiology , Homeodomain Proteins/metabolism , Neoplastic Stem Cells/pathology , Repressor Proteins/metabolism , Transcription Factors/metabolism , Triple Negative Breast Neoplasms/pathology , Adaptor Proteins, Signal Transducing/genetics , Animals , Female , Homeodomain Proteins/genetics , Humans , Mice , Protein Structure, Tertiary , Sin3 Histone Deacetylase and Corepressor Complex , Spheroids, Cellular , Transcription Factors/genetics , Tumor Cells, Cultured
3.
Mol Cancer Ther ; 14(8): 1824-36, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26078298

ABSTRACT

Triple-negative breast cancers (TNBC) lacking estrogen, progesterone, and HER2 receptors account for 10% to 20% of breast cancer and are indicative of poor prognosis. The development of effective treatment strategies therefore represents a pressing unmet clinical need. We previously identified a molecularly targeted approach to target aberrant epigenetics of TNBC using a peptide corresponding to the SIN3 interaction domain (SID) of MAD. SID peptide selectively blocked binding of SID-containing proteins to the paired α-helix (PAH2) domain of SIN3, resulting in epigenetic and transcriptional modulation of genes associated with epithelial-mesenchymal transition (EMT). To find small molecule inhibitor (SMI) mimetics of SID peptide, we performed an in silico screen for PAH2 domain-binding compounds. This led to the identification of the avermectin macrocyclic lactone derivatives selamectin and ivermectin (Mectizan) as candidate compounds. Both selamectin and ivermectin phenocopied the effects of SID peptide to block SIN3-PAH2 interaction with MAD, induce expression of CDH1 and ESR1, and restore tamoxifen sensitivity in MDA-MB-231 human and MMTV-Myc mouse TNBC cells in vitro. Treatment with selamectin or ivermectin led to transcriptional modulation of genes associated with EMT and maintenance of a cancer stem cell phenotype in TNBC cells. This resulted in impairment of clonogenic self-renewal in vitro and inhibition of tumor growth and metastasis in vivo. Underlining the potential of avermectins in TNBC, pathway analysis revealed that selamectin also modulated the expression of therapeutically targetable genes. Consistent with this, an unbiased drug screen in TNBC cells identified selamectin-induced sensitization to a number of drugs, including those targeting modulated genes.


Subject(s)
Ivermectin/analogs & derivatives , Repressor Proteins/antagonists & inhibitors , Triple Negative Breast Neoplasms/metabolism , Animals , Antigens, CD , Antiparasitic Agents/pharmacology , Cadherins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Drug Resistance, Neoplasm , Estrogen Receptor alpha/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Ivermectin/chemistry , Ivermectin/pharmacology , Mice , Models, Molecular , Molecular Conformation , Protein Interaction Domains and Motifs , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
4.
Gynecol Oncol ; 117(1): 88-95, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20056268

ABSTRACT

OBJECTIVES: Lysophosphatidic acid (LPA) has potent growth-regulatory effect in many cell types and has been linked to the in vivo tumor growth and metastasis in several malignancies. The goal of this study was to assess the regulation of (EC) microenvironment by LPA through the examination of its effect on cell proliferation, migration, invasion, uPA activity, and matrix metalloproteinase (MMP) secretion/activation. METHODS: All experiments were performed in vitro using an EC cell line, HEC-1A. Cell proliferation was determined using the Promega MTS proliferation assay following 48 h of exposures to different concentrations of LPA (0.1, 1.0 and 10.0 microM). Cell invasion was assessed using a modified Boyden chamber assay with collagen I coated on the membrane. HEC-1A motility was examined by Boyden chamber migration assay as well as the scratch wound closure assay on type I collagen. MMP secretion/activation in HEC-1A conditioned medium was detected by gelatin zymography. MMP-7 mRNA expression was determined using real-time PCR. uPA activity was measured using a coupled colorimetric assay. RESULTS: LPA, at the concentrations of 0.1 and 1.0 microM, significantly induced the proliferation of HEC-1A cells (p<0.01). At 10 microM, LPA- induced HEC-1A proliferation to a less extent and showed no significant effect on HEC-1A invasion and migration (p>0.05). Gelatin zymogram showed that HEC-1A cells secreted high levels of MMP-7, while MMP-2 and MMP-9 are barely detectable. In addition, LPA significantly enhanced uPA activity in HEC-1A conditioned medium in a concentration-dependent manner. CONCLUSIONS: LPA is a potent modulator of cellular proliferation and invasion for EC cells. It also has the capacity to stimulate the secretion/activity of uPA and MMP-7. Those results suggest that LPA is a bioactive modulator of EC microenvironment and may have a distinct regulation mechanism as observed in epithelial ovarian cancer.


Subject(s)
Carcinoma, Endometrioid/enzymology , Carcinoma, Endometrioid/pathology , Endometrial Neoplasms/enzymology , Endometrial Neoplasms/pathology , Lysophospholipids/pharmacology , Matrix Metalloproteinases/metabolism , Cell Growth Processes/drug effects , Cell Line, Tumor , Enzyme Activation/drug effects , Female , Fibrosarcoma/enzymology , Fibrosarcoma/pathology , Humans , Matrix Metalloproteinase 2/biosynthesis , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 7/biosynthesis , Matrix Metalloproteinase 7/genetics , Matrix Metalloproteinase 7/metabolism , Matrix Metalloproteinases/biosynthesis , Matrix Metalloproteinases/genetics , Neoplasm Invasiveness , RNA, Messenger/biosynthesis , RNA, Messenger/genetics
5.
Gynecol Oncol ; 112(1): 215-23, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19019417

ABSTRACT

OBJECTIVE: We have previously shown that lysophosphatidic acid (LPA) promotes the ovarian cancer metastatic cascade. In this study, we evaluated the role of LPA on endometrial cancer invasion. METHODS: Transient mRNA knockdown was accomplished using pre-designed siRNA duplexes against LPA receptor 2 (LPA2) and human matrix metalloproteinase-7 (MMP-7). RT-PCR was used to characterize LPA receptor and MMP-7 expression. Analysis of in vitro invasion was performed with rat-tail collagen type I coated Boyden chambers. Gelatin zymography was used to evaluate the MMP activity in cell culture conditioned media. Cell-cell and cell-matrix attachment was also assessed upon LPA2 knockdown to further illuminate the LPA2 cascade. RESULTS: LPA increases HEC1A cellular invasion at physiologic concentrations (0.1-1 muM). Of the four principle LPA receptors, LPA2 is predominantly expressed by HEC1A cells. Transient transfection of LPA2 siRNA reduced LPA2 mRNA expression in HEC1A cells by 93% (P<0.01). Silencing LPA2 eliminated the LPA-stimulated increase in invasion (P<0.05) and reduced LPA-induced MMP-7 secretion/activation, without significantly affecting cell-cell or cell-matrix adhesion. Silencing MMP-7 reduced overall invasion but did not eliminate LPA's pro-invasive effect on HEC1A cells, as compared to negative control (P<0.05). Gelatin zymography confirmed that LPA2 and MMP-7 knockdown reduced MMP-7 activation in HEC1A conditioned media. CONCLUSION: LPA2 mediates LPA-stimulated HEC1A invasion and the subsequent activation of MMP-7.


Subject(s)
Endometrial Neoplasms/metabolism , Endometrial Neoplasms/pathology , Lysophospholipids/pharmacology , Receptors, Lysophosphatidic Acid/metabolism , Cell Adhesion/drug effects , Cell Adhesion/physiology , Cell Communication/drug effects , Cell Communication/physiology , Cell Line, Tumor , Endometrial Neoplasms/genetics , Enzyme Activation , Extracellular Matrix/pathology , Female , Gene Silencing , Humans , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 7/metabolism , Neoplasm Invasiveness , RNA, Small Interfering/genetics , Receptors, Lysophosphatidic Acid/antagonists & inhibitors , Receptors, Lysophosphatidic Acid/genetics , Transfection
6.
Gynecol Oncol ; 108(2): 361-9, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18073130

ABSTRACT

OBJECTIVES: To evaluate the role of LPA in regulating E-cadherin cell surface expression, adhesion, and invasion in epithelial ovarian carcinoma (EOC) cells. METHODS: E-cadherin mRNA expression in OVCA429 and IOSE-29 cells was evaluated by real-time RT-PCR. Immunofluorescence and Western blot analysis were performed to determine cell surface expression and shedding of E-cadherin 80-kDa soluble fragment by LPA. Kinetics of LPA-induced uPA activity was followed with a colorimetric enzymatic assay. Invasion assays were performed in a modified Boyden chamber where cells were allowed to migrate to the bottom compartment through a porous filter coated with collagen. Additionally we measured the 80-kDa form from the ascites of women with stage III/IV EOC. RESULTS: LPA induces E-cadherin shedding of a soluble 80-kDa fragment. We found that this process is mediated by the uPA proteolytic cascade. High levels of soluble E-cadherin were found in the ascites from women with advanced stage EOC. LPA and a soluble recombinant E-cadherin-Fc chimera promotes invasion of OVCA429 cells. CONCLUSIONS: LPA induces shedding of an 80-kDa E-cadherin-soluble fragment in an uPA-dependent manner and promotes in vitro invasion. High levels of soluble E-cadherin in malignant ascites may also affect ovarian metastasis.


Subject(s)
Cadherins/biosynthesis , Lysophospholipids/pharmacology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Urokinase-Type Plasminogen Activator/metabolism , Cadherins/genetics , Cell Line, Tumor , Down-Regulation , Female , Humans , Immunoglobulin Fc Fragments/genetics , Neoplasm Invasiveness , Ovarian Neoplasms/genetics , Protein Structure, Tertiary , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Recombinant Fusion Proteins/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Urokinase-Type Plasminogen Activator/antagonists & inhibitors
7.
Crit Rev Clin Lab Sci ; 44(1): 87-114, 2007.
Article in English | MEDLINE | ID: mdl-17175521

ABSTRACT

Our understanding of the tumor microenvironment continues to evolve and allows for the identification of biomarkers that should detect the presence of early stage malignancies. Recent advances in computational analysis and biomedical technologies have come together to elucidate signatures associated with cancer and that are capable of identifying unique tumor-specific proteins. Within the tumor microenvironment, we continue to characterize the proteophysiology of the different steps associated with tumor progression. The urgent need for biomarkers accurately detecting early-stage epithelial ovarian cancer has prompted us, and others, to engage in a search for specific peptide signatures that may discriminate transformed cells from those of the normal ovarian microenvironment. This endeavor also provides new insights into the biology of the disease, which may not only be applicable to detection but may also help to initiate new therapies and optimize patient care.


Subject(s)
Biomarkers, Tumor , Carcinoma/diagnosis , Ovarian Neoplasms/diagnosis , Proteomics , Early Diagnosis , Female , Humans
8.
J Biol Chem ; 282(7): 4924-4931, 2007 Feb 16.
Article in English | MEDLINE | ID: mdl-17158885

ABSTRACT

Late stage ovarian cancer is characterized by disseminated intraperitoneal metastasis as secondary lesions anchor in the type I and III collagen-rich submesothelial matrix. Ovarian carcinoma cells preferentially adhere to interstitial collagen, and collagen-induced integrin clustering up-regulates the expression of the transmembrane collagenase membrane type 1 matrix metalloproteinase (MT1-MMP). Collagenolytic activity is important in intraperitoneal metastasis, potentiating invasion through the mesothelial cell layer and colonization of the submesothelial collagen-rich matrix. The objective of this study was to elucidate a potential mechanistic link between collagen adhesion and MT1-MMP expression. Our results indicate that culturing cells on three-dimensional collagen gels, but not thin layer collagen or synthetic three-dimensional hydrogels, results in rapid induction of the transcription factor EGR1. Integrin signaling through a SRC kinase-dependent pathway is necessary for EGR1 induction. Silencing of EGR1 expression using small interfering RNA abrogated collagen-induced MT1-MMP expression and inhibited cellular invasion of three-dimensional collagen gels. These data support a model for intraperitoneal metastasis wherein collagen adhesion and clustering of collagen binding integrins activates integrin-mediated signaling via SRC kinases to induce expression of EGR1, resulting in transcriptional activation of the MT1-MMP promoter and subsequent MT1-MMP-catalyzed collagen invasion. This model highlights the role of unique interactions between ovarian carcinoma cells and interstitial collagens in the ovarian tumor microenvironment in inducing gene expression changes that potentiate intraperitoneal metastatic progression.


Subject(s)
Collagen Type II/metabolism , Collagen Type I/metabolism , Early Growth Response Protein 1/metabolism , Gene Expression Regulation, Neoplastic , Matrix Metalloproteinase 14/biosynthesis , Neoplasm Proteins/biosynthesis , Ovarian Neoplasms/metabolism , Cell Adhesion/genetics , Early Growth Response Protein 1/genetics , Extracellular Matrix/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Humans , Integrins/genetics , Integrins/metabolism , Matrix Metalloproteinase 14/genetics , Neoplasm Metastasis , Neoplasm Proteins/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Peritoneal Neoplasms/genetics , Peritoneal Neoplasms/metabolism , Peritoneal Neoplasms/pathology , Peritoneal Neoplasms/secondary , Promoter Regions, Genetic , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Signal Transduction , Transcription, Genetic , Tumor Cells, Cultured , src-Family Kinases/genetics , src-Family Kinases/metabolism
9.
Crit Rev Clin Lab Sci ; 43(5-6): 393-425, 2006.
Article in English | MEDLINE | ID: mdl-17050079

ABSTRACT

The tumor microenvironment plays an important role equal to the tumor cell population in the progression of cancer. Consisting of stromal fibroblasts, inflammatory cells, components of the vasculature, normal epithelia, and extracellular matrix, the surrounding environment interacts or "cross-talks" with tumor cells through the release of growth factors, cytokines, proteases, and other bioactive molecules. Tumor growth, formation of new vascular networks, evasion of the host immune system, and invasion and metastasis are processes that co-evolve and become finely optimized and regulated within the tumor microenvironment. However, relatively recent reports on three areas of study have come together to add new levels of complexity to the tumor microenvironment. These include ectodomain shedding of proteins, shedding of membrane-derived vesicles, and novel roles for phospholipids. These dynamic changes that take place in the tumor microenvironment provide new avenues for study and for the early detection of cancer, whereas proteomic technologies provide the means to detect these unique proteins and lipids. Here we review the evolving concepts of the tumor microenvironment that, together with advances in proteomic technologies, hold the promise to facilitate the detection of early-stage cancer.


Subject(s)
Neoplasms/diagnosis , Allantois , Autocrine Communication , Cell Membrane/physiology , Humans , Inflammation Mediators/physiology , Lysophospholipids/physiology , Models, Biological , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasms/pathology , Neoplasms/physiopathology , Neovascularization, Pathologic , Paracrine Communication , Peptide Hydrolases/physiology , Proteomics , Stromal Cells/pathology
10.
Cancer Res ; 64(19): 7045-9, 2004 Oct 01.
Article in English | MEDLINE | ID: mdl-15466198

ABSTRACT

Malignant ovarian ascites are rich in cellular components, membrane-bound vesicles, and soluble proteins. This study focused on the structure of membrane-bound vesicles and their ability to promote invasion in cultured malignant ovarian epithelium. Membrane vesicles were derived from women with stage I-IV malignant ovarian ascites and from nonmalignant gynecologic ascites. Isolated vesicles were characterized by immunofluorescence and Western blot analysis. Using gel zymography for matrix metalloproteinase (MMP) detection and a colorimetric assay for urokinase-type plasminogen activator (uPA) analysis, we analyzed the proteinase activities of MMP-2, MMP-9, and uPA from the prepared vesicles, whole cells isolated from ascites, and the cell-free ultracentrifuged supernatant. The invasiveness of established cultured malignant ovarian epithelium on addition of ascites-derived vesicles was tested using a Matrigel-based invasion assay. Fractionation of malignant ascites revealed that extracellular matrix-degrading proteinases including MMPs and uPA are localized preferentially in membrane vesicles. All malignant vesicles tested, regardless of cancer stage, stimulated invasion. Furthermore, the combination of ovarian cancer cells and membrane vesicles resulted in greater uPA activation than that of cells or vesicles alone. Membrane vesicles from malignant ascites were also found to contain activated MMP-2, MMP-9, and uPA. Our data suggest that vesicle-stimulated proteinase activation leads to increased extracellular matrix degradation, which may facilitate tumor cell invasion and metastasis.


Subject(s)
Ovarian Neoplasms/enzymology , Ovarian Neoplasms/pathology , Ascites/enzymology , Ascites/metabolism , Ascites/pathology , Blotting, Western , Cell Line, Tumor , Cell Membrane/enzymology , Cell Membrane/pathology , Enzyme Activation , ErbB Receptors/metabolism , Female , Humans , Integrin beta1/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinases, Membrane-Associated , Metalloendopeptidases/metabolism , Neoplasm Invasiveness , Neoplasm Staging , Ovarian Neoplasms/metabolism , Urokinase-Type Plasminogen Activator/metabolism
11.
J Biol Chem ; 277(44): 41480-8, 2002 Nov 01.
Article in English | MEDLINE | ID: mdl-12194986

ABSTRACT

Activation of matrix metalloproteinase 2 (MMP-2) has been shown to play a significant role in the behavior of cancer cells, affecting both migration and invasion. The activation process requires multimolecular complex formation involving pro-MMP-2, membrane type 1-MMP (MT1-MMP), and tissue inhibitor of metalloproteinases-2 (TIMP-2). Because calcium is an important regulator of keratinocyte function, we evaluated the effect of calcium on MMP regulation in an oral squamous cell carcinoma line (SCC25). Increasing extracellular calcium (0.09-1.2 mm) resulted in a dose-dependent increase in MT1-MMP-dependent pro-MMP-2 activation. Despite the requirement for MT1-MMP in the activation process, no changes in MT1-MMP expression, cell surface localization, or endocytosis were apparent. However, increased generation of the catalytically inactive 43-kDa MT1-MMP autolysis product and decline in the TIMP-2 levels in conditioned media were observed. The decrease in TIMP-2 levels in the conditioned media was prevented by a broad spectrum MMP inhibitor, suggesting that calcium promotes recruitment of TIMP-2 to MT1-MMP on the cell surface. Despite the decline in soluble TIMP-2, no accumulation of TIMP-2 in cell lysates was seen. Blocking TIMP-2 degradation with bafilomycin A1 significantly increased cell-associated TIMP-2 levels in the presence of high calcium. These data suggest that the decline in TIMP-2 is because of increased calcium-mediated MT1-MMP-dependent degradation of TIMP-2. In functional studies, increasing calcium enhanced MMP-dependent cellular migration on laminin-5-rich matrix using an in vitro colony dispersion assay. Taken together, these results suggest that changes in extracellular calcium can regulate post-translational MMP dynamics and thus affect the cellular behavior of oral squamous cell carcinoma.


Subject(s)
Calcium/physiology , Carcinoma, Squamous Cell/pathology , Matrix Metalloproteinase 2/physiology , Mouth Neoplasms/pathology , Carcinoma, Squamous Cell/enzymology , Cell Movement , Enzyme Activation , Enzyme Precursors/metabolism , Humans , Matrix Metalloproteinases, Membrane-Associated , Metalloendopeptidases/physiology , Mouth Neoplasms/enzymology , Tetradecanoylphorbol Acetate/pharmacology , Tissue Inhibitor of Metalloproteinase-2/analysis , Tumor Cells, Cultured
12.
Evolution ; 46(6): 1801-1817, 1992 Dec.
Article in English | MEDLINE | ID: mdl-28567775

ABSTRACT

Sequence comparisons of small subunit ribosomal RNA coding regions from 12 chlorophylls a + c-containing algae were used to infer phylogenetic relationships within the Chromophyta. Three chromophyte lines of descent, delineated by the Bacillariophyceae, the Phaeophyceae/Xanthophyceae, and the Chrysophyceae/Eustigmatophyceae/Synurophyceae are members of a complex evolutionary assemblage, which also includes representatives of the Oomycota ("lower" fungi). Maximum parsimony and distance matrix methods demonstrate a common evolutionary history for these lineages but their relative branching order could not be determined. Other algal species with chlorophylls a + c, including dinoflagellates and prymnesiophytes, are not members of this complex assemblage. Dinoflagellates are specifically related to apicomplexans and ciliates, and the prymnesiophyte, Emiliania huxleyi, represents an independent photosynthetic lineage that separated from other eukaryotes during the nearly simultaneous divergence of plants, animals, fungi, and a number of other protist lineages. The small subunit rRNA phylogenies of chromophytes/oomycetes were compared to those derived from comparisons of ultrastructural characters. Only tubular, tripartite mastigonemes (flagellar hairs) characterized all studied taxa of chromophytes/oomycetes as a monophyletic assemblage.

SELECTION OF CITATIONS
SEARCH DETAIL
...