Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Lung Cancer ; 178: 213-219, 2023 04.
Article in English | MEDLINE | ID: mdl-36878102

ABSTRACT

OBJECTIVES: Pleural mesothelioma (PM) is an aggressive malignancy with limited treatment options. The first-line therapy has remained unchanged for two decades and consists of pemetrexed in combination with cisplatin. Immune-checkpoint inhibitors (nivolumab plus ipilimumab) have high response rates, resulting in recent updates in treatment recommendations by the U.S. Food and Drug Administration. However, the overall benefits of combination treatment are modest, suggesting that other targeted therapy options should be investigated. MATERIALS AND METHODS: We employed high-throughput drug sensitivity and resistance testing on five established PM cell lines using 527 cancer drugs in a 2D setting. Drugs of the greatest potential (n = 19) were selected for further testing in primary cell models derived from pleural effusions of seven PM patients. RESULTS: All established and primary patient-derived PM cell models were sensitive to the mTOR inhibitor AZD8055. Furthermore, another mTOR inhibitor (temsirolimus) showed efficacy in most of the primary patient-derived cells, although a less robust effect was observed when compared with the established cell lines. Most of the established cell lines and all patient-derived primary cells exhibited sensitivity to the PI3K/mTOR/DNA-PK inhibitor LY3023414. The Chk1 inhibitor prexasertib showed activity in 4/5 (80%) of the established cell lines and in 2/7 (29%) of the patient-derived primary cell lines. The BET family inhibitor JQ1 showed activity in four patient-derived cell models and in one established cell line. CONCLUSION: mTOR and Chk1 pathways had promising results with established mesothelioma cell lines in an ex vivo setting. In patient-derived primary cells, drugs targeting mTOR pathway in particular showed efficacy. These findings may inform novel treatment strategies for PM.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Mesothelioma, Malignant , Mesothelioma , Pleural Neoplasms , Humans , Pharmaceutical Preparations , MTOR Inhibitors , Lung Neoplasms/pathology , Mesothelioma, Malignant/drug therapy , Mesothelioma/pathology , Antineoplastic Agents/therapeutic use , Pleural Neoplasms/pathology , TOR Serine-Threonine Kinases/metabolism , Cell Line, Tumor
2.
SLAS Discov ; 28(2): 36-41, 2023 03.
Article in English | MEDLINE | ID: mdl-36464160

ABSTRACT

Establishment of drug testing of patient-derived cancer cells (PDCs) in physiologically relevant 3-dimensional (3D) culture is central for drug discovery and cancer research, as well as for functional precision medicine. Here, we describe the detailed protocol allowing the 3D drug testing of PDCs - or any type of cells of interest - in Matrigel in 384-well plate format using automation. We also provide an alternative protocol, which does not require supporting matrices. The cancer tissue is obtained directly from clinics (after surgery or biopsy) and processed into single cell suspension. Systematic drug sensitivity and resistance testing (DSRT) is carried out on the PDCs directly after cancer cell isolation from tissue or on cells expanded for a few passages. In the 3D-DSRT assay, the PDCs are plated in 384-well plates in Matrigel, grown as spheroids, and treated with compounds of interest for 72 h. The cell viability is directly measured using a luminescence-based assay. Alternatively, prior to the cell viability measurement, drug-treated cells can be directly subjected to automated high-content bright field imaging or stained for fluorescence (live) cell microscopy for further image analysis. This is followed by the quality control and data analysis. The 3D-DSRT can be performed within a 1-3-week timeframe of the clinical sampling of cancer tissue, depending on the amount of the obtained tissue, growth rate of cancer cells, and the number of drugs being tested. The 3D-DSRT method can be flexibly modified, e.g., to be carried out with or without supporting matrices with U-bottom 384-well plates when appropriate for the PDCs or other cell models used.


Subject(s)
Drug Discovery , Neoplasms , Humans , Drug Screening Assays, Antitumor , Drug Discovery/methods , Neoplasms/drug therapy , Collagen/pharmacology
3.
Br J Cancer ; 128(4): 678-690, 2023 02.
Article in English | MEDLINE | ID: mdl-36476658

ABSTRACT

Many efforts are underway to develop novel therapies against the aggressive high-grade serous ovarian cancers (HGSOCs), while our understanding of treatment options for low-grade (LGSOC) or mucinous (MUCOC) of ovarian malignancies is not developing as well. We describe here a functional precision oncology (fPO) strategy in epithelial ovarian cancers (EOC), which involves high-throughput drug testing of patient-derived ovarian cancer cells (PDCs) with a library of 526 oncology drugs, combined with genomic and transcriptomic profiling. HGSOC, LGSOC and MUCOC PDCs had statistically different overall drug response profiles, with LGSOCs responding better to targeted inhibitors than HGSOCs. We identified several subtype-specific drug responses, such as LGSOC PDCs showing high sensitivity to MDM2, ERBB2/EGFR inhibitors, MUCOC PDCs to MEK inhibitors, whereas HGSOCs showed strongest effects with CHK1 inhibitors and SMAC mimetics. We also explored several drug combinations and found that the dual inhibition of MEK and SHP2 was synergistic in MAPK-driven EOCs. We describe a clinical case study, where real-time fPO analysis of samples from a patient with metastatic, chemorefractory LGSOC with a CLU-NRG1 fusion guided clinical therapy selection. fPO-tailored therapy with afatinib, followed by trastuzumab and pertuzumab, successfully reduced tumour burden and blocked disease progression over a five-year period. In summary, fPO is a powerful approach for the identification of systematic drug response differences across EOC subtypes, as well as to highlight patient-specific drug regimens that could help to optimise therapies to individual patients in the future.


Subject(s)
Cystadenocarcinoma, Serous , Ovarian Neoplasms , Humans , Female , Precision Medicine , Ovarian Neoplasms/genetics , Carcinoma, Ovarian Epithelial/pathology , Cystadenocarcinoma, Serous/genetics , Mitogen-Activated Protein Kinase Kinases
4.
Cell Death Dis ; 13(8): 714, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35977930

ABSTRACT

Most patients with ovarian cancer (OC) are diagnosed at a late stage when there are very few therapeutic options and a poor prognosis. This is due to the lack of clearly defined underlying mechanisms or an oncogenic addiction that can be targeted pharmacologically, unlike other types of cancer. Here, we identified protein tyrosine kinase 7 (PTK7) as a potential new therapeutic target in OC following a multiomics approach using genetic and pharmacological interventions. We performed proteomics analyses upon PTK7 knockdown in OC cells and identified novel downstream effectors such as synuclein-γ (SNCG), SALL2, and PP1γ, and these findings were corroborated in ex vivo primary samples using PTK7 monoclonal antibody cofetuzumab. Our phosphoproteomics analyses demonstrated that PTK7 modulates cell adhesion and Rho-GTPase signaling to sustain epithelial-mesenchymal transition (EMT) and cell plasticity, which was confirmed by high-content image analysis of 3D models. Furthermore, using high-throughput drug sensitivity testing (525 drugs) we show that targeting PTK7 exhibited synergistic activity with chemotherapeutic agent paclitaxel, CHK1/2 inhibitor prexasertib, and PLK1 inhibitor GSK461364, among others, in OC cells and ex vivo primary samples. Taken together, our study provides unique insight into the function of PTK7, which helps to define its role in mediating aberrant Wnt signaling in ovarian cancer.


Subject(s)
Ovarian Neoplasms , Receptor Protein-Tyrosine Kinases , Carcinoma, Ovarian Epithelial/genetics , Cell Adhesion Molecules/metabolism , Cell Line, Tumor , Cell Plasticity , Epithelial-Mesenchymal Transition/genetics , Female , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Wnt Signaling Pathway
5.
Transl Oncol ; 15(1): 101290, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34837846

ABSTRACT

Therapy options for patients with metastatic melanoma (MM) have considerably improved over the past decade. However, many patients still need effective therapy after unsuccessful immunotherapy, especially patients with BRAF-negative tumors who lack the option of targeted treatment second line. Therefore, the elucidation of efficient and personalized therapy options for these patients is required. In this study, three patient-derived cancer cells (PDCs) were established from NRAS Q61-positive MM patients. The response of PDCs and five established melanoma cell lines (two NRAS-positive, one wild type, and two BRAF V600-positive) was evaluated toward a panel of 527 oncology drugs using high-throughput drug sensitivity and resistance testing. The PDCs and cell lines displayed strong responses to MAPK inhibitors, as expected. Additionally, the PDCs and cell lines were responsive to PI3K/mTOR, mTOR, and PLK1 inhibitors among other effective drugs currently undergoing clinical trials. Combinations with a MEK inhibitor were tested with other targeted agents to identify effective synergies. MEK inhibitor showed synergy with multikinase inhibitor ponatinib, ABL inhibitor nilotinib, PI3K/mTOR inhibitor pictilisib, and pan-RAF inhibitor LY3009120. The application of the patients' cancer cells for functional drug testing ex vivo is one step further in the process of identifying potential agents and agent combinations to personalize treatment for patients with MM. Our preliminary study results suggest that this approach has the potential for larger-scale drug testing and personalized treatment applications in our expansion trial. Our results show that drug sensitivity and resistance testing may be implementable in the treatment planning of patients with MM.

6.
Mol Oncol ; 16(12): 2312-2329, 2022 06.
Article in English | MEDLINE | ID: mdl-34890102

ABSTRACT

Cell-cell and cell-matrix adhesion proteins that have been implicated in colorectal epithelial integrity and epithelial-to-mesenchymal transition could be robust prognostic and potential predictive biomarkers for standard and novel therapies. We analyzed in situ protein expression of E-cadherin (ECAD), integrin ß4 (ITGB4), zonula occludens 1 (ZO-1), and cytokeratins in a single-hospital series of Norwegian patients with colorectal cancer (CRC) stages I-IV (n = 922) using multiplex fluorescence-based immunohistochemistry (mfIHC) on tissue microarrays. Pharmacoproteomic associations were explored in 35 CRC cell lines annotated with drug sensitivity data on > 400 approved and investigational drugs. ECAD, ITGB4, and ZO-1 were positively associated with survival, while cytokeratins were negatively associated with survival. Only ECAD showed independent prognostic value in multivariable Cox models. Clinical and molecular associations for ECAD were technically validated on a different mfIHC platform, and the prognostic value was validated in another Norwegian series (n = 798). In preclinical models, low and high ECAD expression differentially associated with sensitivity to topoisomerase, aurora, and HSP90 inhibitors, and EGFR inhibitors. E-cadherin protein expression is a robust prognostic biomarker with potential clinical utility in CRC.


Subject(s)
Biomarkers, Tumor , Cadherins , Colorectal Neoplasms , Antigens, CD , Biomarkers, Tumor/metabolism , Cadherins/metabolism , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Epithelial-Mesenchymal Transition , Humans , Immunohistochemistry , Keratins , Prognosis
7.
Cancers (Basel) ; 13(15)2021 Jul 24.
Article in English | MEDLINE | ID: mdl-34359627

ABSTRACT

BACKGROUND: Dysregulated lipid metabolism is emerging as a hallmark in several malignancies, including ovarian cancer (OC). Specifically, metastatic OC is highly dependent on lipid-rich omentum. We aimed to investigate the therapeutic value of targeting lipid metabolism in OC. For this purpose, we studied the role of PCSK9, a cholesterol-regulating enzyme, in OC cell survival and its downstream signaling. We also investigated the cytotoxic efficacy of a small library of metabolic (n = 11) and mTOR (n = 10) inhibitors using OC cell lines (n = 8) and ex vivo patient-derived cell cultures (PDCs, n = 5) to identify clinically suitable drug vulnerabilities. Targeting PCSK9 expression with siRNA or PCSK9 specific inhibitor (PF-06446846) impaired OC cell survival. In addition, overexpression of PCSK9 induced robust AKT phosphorylation along with increased expression of ERK1/2 and MEK1/2, suggesting a pro-survival role of PCSK9 in OC cells. Moreover, our drug testing revealed marked differences in cytotoxic responses to drugs targeting metabolic pathways of high-grade serous ovarian cancer (HGSOC) and low-grade serous ovarian cancer (LGSOC) PDCs. Our results show that targeting PCSK9 expression could impair OC cell survival, which warrants further investigation to address the dependency of this cancer on lipogenesis and omental metastasis. Moreover, the differences in metabolic gene expression and drug responses of OC PDCs indicate the existence of a metabolic heterogeneity within OC subtypes, which should be further explored for therapeutic improvements.

8.
Transl Oncol ; 14(4): 101027, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33530027

ABSTRACT

Genetic rearrangements involving the anaplastic lymphoma kinase (ALK) gene create oncogenic drivers for several cancers, including malignant peritoneal mesothelioma (MPeM). Here, we report genomic and functional precision oncology profiling on a rare case of a 5-year old patient diagnosed with wide-spread and aggressive MPeM, driven by STRN-ALK rearrangement. We established genomically representative patient-derived cancer cells (PDCs) from the tumor sample and performed high-throughput drug sensitivity testing with 527 oncology compounds to identify potent inhibitors. As expected, the PDCs were overall sensitive to the ALK inhibitors, although the eight different inhibitors tested had variable efficacy. We also discovered other effective inhibitors, such as MEK/ERK inhibitors and those targeting pathways downstream of ALK as well as Bcl-xl inhibitors. In contrast, most cytotoxic drugs were not very effective. ALK inhibitors synergized with MEK and PI3K/mTOR inhibitors, highlighting potential combinatorial strategies to enhance drug efficacy and tackle drug resistance. Based on genomic data and associated functional validation, the patient was treated with the ALK inhibitor crizotinib in combination with conventional chemotherapy (cisplatin and gemcitabine). A complete disease remission was reached, lasting now for over 3 years. Our results illustrate a rare pediatric cancer case, and highlight the potential of functional precision oncology to discover pathogenetic drivers, validate dependency on driver signals, compare different inhibitors against each other and potentially enhance targeted treatments by drug combinations. Such real-time implementation of functional precision oncology could pave the way towards safer and more effective personalized cancer therapies for individual pediatric cancer patients with rare tumors.

9.
Cell Death Dis ; 11(9): 790, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32989221

ABSTRACT

Glucocorticoids are routinely used in the clinic as anti-inflammatory and immunosuppressive agents as well as adjuvants during cancer treatment to mitigate the undesirable side effects of chemotherapy. However, recent studies have indicated that glucocorticoids may negatively impact the efficacy of chemotherapy by promoting tumor cell survival, heterogeneity, and metastasis. Here, we show that dexamethasone induces upregulation of ROR1 expression in ovarian cancer (OC), including platinum-resistant OC. Increased ROR1 expression resulted in elevated RhoA, YAP/TAZ, and BMI-1 levels in a panel of OC cell lines as well as primary ovarian cancer patient-derived cells, underlining the translational relevance of our studies. Importantly, dexamethasone induced differentiation of OC patient-derived cells ex vivo according to their molecular subtype and the phenotypic expression of cell differentiation markers. High-throughput drug testing with 528 emerging and clinical oncology compounds of OC cell lines and patient-derived cells revealed that dexamethasone treatment increased the sensitivity to several AKT/PI3K targeted kinase inhibitors, while significantly decreasing the efficacy of chemotherapeutics such as taxanes, as well as anti-apoptotic compounds such as SMAC mimetics. On the other hand, targeting ROR1 expression increased the efficacy of taxane drugs and SMAC mimetics, suggesting new combinatorial targeted treatments for patients with OC.


Subject(s)
Drug Resistance, Neoplasm/drug effects , Glucocorticoids/pharmacology , Ovarian Neoplasms/drug therapy , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/pathology , Cell Differentiation/drug effects , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic/drug effects , Glucocorticoids/metabolism , Humans , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Ovarian Neoplasms/genetics
10.
Clin Cancer Res ; 24(4): 794-806, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29242316

ABSTRACT

Purpose: Response to standard oncologic treatment is limited in colorectal cancer. The gene expression-based consensus molecular subtypes (CMS) provide a new paradigm for stratified treatment and drug repurposing; however, drug discovery is currently limited by the lack of translation of CMS to preclinical models.Experimental Design: We analyzed CMS in primary colorectal cancers, cell lines, and patient-derived xenografts (PDX). For classification of preclinical models, we developed an optimized classifier enriched for cancer cell-intrinsic gene expression signals, and performed high-throughput in vitro drug screening (n = 459 drugs) to analyze subtype-specific drug sensitivities.Results: The distinct molecular and clinicopathologic characteristics of each CMS group were validated in a single-hospital series of 409 primary colorectal cancers. The new, cancer cell-adapted classifier was found to perform well in primary tumors, and applied to a panel of 148 cell lines and 32 PDXs, these colorectal cancer models were shown to recapitulate the biology of the CMS groups. Drug screening of 33 cell lines demonstrated subtype-dependent response profiles, confirming strong response to EGFR and HER2 inhibitors in the CMS2 epithelial/canonical group, and revealing strong sensitivity to HSP90 inhibitors in cells with the CMS1 microsatellite instability/immune and CMS4 mesenchymal phenotypes. This association was validated in vitro in additional CMS-predicted cell lines. Combination treatment with 5-fluorouracil and luminespib showed potential to alleviate chemoresistance in a CMS4 PDX model, an effect not seen in a chemosensitive CMS2 PDX model.Conclusions: We provide translation of CMS classification to preclinical models and uncover a potential for targeted treatment repurposing in the chemoresistant CMS4 group. Clin Cancer Res; 24(4); 794-806. ©2017 AACR.


Subject(s)
Biomarkers, Tumor/genetics , Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Xenograft Model Antitumor Assays , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Colorectal Neoplasms/classification , Colorectal Neoplasms/drug therapy , Consensus , Fluorouracil/administration & dosage , Gene Expression Profiling/methods , Humans , Isoxazoles/administration & dosage , Mice, Nude , Mice, SCID , Resorcinols/administration & dosage
11.
PLoS One ; 6(12): e28325, 2011.
Article in English | MEDLINE | ID: mdl-22164270

ABSTRACT

In primary human melanoma, the membrane-type matrix metalloproteinase, MT3-MMP, is overexpressed in the most aggressive nodular-type tumors. Unlike MT1-MMP and MT2-MMP, which promote cell invasion through basement membranes and collagen type I-rich tissues, the function of MT3-MMP in tumor progression remains unclear. Here, we demonstrate that MT3-MMP inhibits MT1-MMP-driven melanoma cell invasion in three-dimensional collagen, while yielding an altered, yet MT1-MMP-dependent, form of expansive growth behavior that phenocopies the formation of nodular cell colonies. In melanoma cell lines originating from advanced primary or metastatic lesions, endogenous MT3-MMP expression was associated with limited collagen-invasive potential. In the cell lines with highest MT3-MMP expression relative to MT1-MMP, collagen-invasive activity was increased following stable MT3-MMP gene silencing. Consistently, MT3-MMP overexpression in cells derived from less advanced superficially spreading melanoma lesions, or in the MT3-MMP knockdown cells, reduced MT1-MMP-dependent collagen invasion. Rather than altering MT1-MMP transcription, MT3-MMP interacted with MT1-MMP in membrane complexes and reduced its cell surface expression. By contrast, as a potent fibrinolytic enzyme, MT3-MMP induced efficient invasion of the cells in fibrin, a provisional matrix component frequently found at tumor-host tissue interfaces and perivascular spaces of melanoma. Since MT3-MMP was significantly upregulated in biopsies of human melanoma metastases, these results identify MT3-MMP as a matrix-dependent modifier of the invasive tumor cell functions during melanoma progression.


Subject(s)
Gene Expression Regulation, Neoplastic , Matrix Metalloproteinase 16/metabolism , Melanoma/pathology , Skin Neoplasms/pathology , Catalysis , Cell Line, Tumor , Cell Membrane/metabolism , Collagen/chemistry , Collagen/metabolism , Disease Progression , Fibrin/metabolism , Gene Silencing , Humans , Lymphatic Metastasis , Melanoma/metabolism , Neoplasm Invasiveness , Polymerase Chain Reaction/methods , Prognosis , Skin Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...