Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Data Brief ; 48: 109158, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37095758

ABSTRACT

This data article is related to the previous research, which addressed the development of a COVID-19 recombinant vaccine candidate. Here, we present the additional data in support of the safety and protective efficacy evaluation of two COVID-19 vaccine candidates based on the coronaviruses' S protein fragments and a structurally modified plant virus - spherical particles. The effectiveness of the experimental vaccines was studied against the SARS-CoV-2 virus in an in vivo infection model in female Syrian hamsters. The body weight of vaccinated laboratory animals was monitored. The histological assessment data of the infected with the SARS-CoV-2 virus hamsters' lungs are provided.

2.
Mol Biol ; 54(2): 243-248, 2020.
Article in English | MEDLINE | ID: mdl-32431461

ABSTRACT

Thanks to their strong immunostimulating properties and safety for humans, plant viruses represent an appropriate basis for the design of novel vaccines. The coat protein of Alternanthera mosaic virus can form virus-like particles that are stable under physiological conditions and have adjuvant properties. This work presents a recombinant human rotavirus A antigen based on the epitope of rotavirus structural protein VP6, using Alternanthera mosaic virus coat protein as a carrier. An expression vector containing the gene of Alternanthera mosaic virus (MU strain) coat protein fused to the epitope of rotavirus protein VP6 was designed. Immunoblot analysis showed that the chimeric protein was effectively recognized by commercial polyclonal antibodies to rotavirus and therefore is a suitable candidate for development of a vaccine prototype. Interaction of the chimeric recombinant protein with the native coat protein of Alternanthera mosaic virus and its RNA resulted in the formation of ribonucleoprotein complexes that were recognized by anti-rotavirus antibodies.

3.
Mol Biol (Mosk) ; 54(2): 278-284, 2020.
Article in Russian | MEDLINE | ID: mdl-32392197

ABSTRACT

Thanks to their strong immunostimulating properties and safety for humans, plant viruses represent an appropriate basis for the design of novel vaccines. The coat protein of Alternanthera mosaic virus can form virus-like particles that are stable under physiological conditions and have adjuvant properties. This work presents a recombinant human rotavirus A antigen based on the epitope of rotavirus structural protein VP6, using Alternanthera mosaic virus coat protein as a carrier. An expression vector containing the gene of Alternanthera mosaic virus (MU strain) coat protein fused to the epitope of rotavirus protein VP6 was designed. Immunoblot analysis showed that the chimeric protein was effectively recognized by commercial polyclonal antibodies to rotavirus and therefore is a suitable candidate for development of a vaccine prototype. Interaction of the chimeric recombinant protein with the native coat protein of Alternanthera mosaic virus and its RNA resulted in the formation of ribonucleoprotein complexes that were recognized by anti-rotavirus antibodies.


Subject(s)
Antigens, Viral/immunology , Capsid Proteins/immunology , Potexvirus/immunology , Rotavirus/immunology , Antibodies, Viral , Humans , Recombinant Proteins/immunology
4.
Acta Naturae ; 11(4): 73-78, 2019.
Article in English | MEDLINE | ID: mdl-31993237

ABSTRACT

Currently, the assembly of helical plant viruses is poorly understood. The viral assembly and infection may be affected by the charge distribution on the virion surface. However, only the total virion charge (isoelectric point) has been determined for most plant viruses. Here, we report on the first application of positively charged magnetic nanoparticles for mapping the surface charge distribution of helical plant viruses. The charge was demonstrated to be unevenly distributed on the surface of viruses belonging to different taxonomic groups, with the negative charge being predominantly located at one end of the virions. This charge distribution is mainly controlled by viral RNA.

5.
Acta Naturae ; 9(4): 52-57, 2017.
Article in English | MEDLINE | ID: mdl-29340217

ABSTRACT

We had shown the genomic RNA of potexviruses potato virus X and the alternanthera mosaic virus to be inaccessible in vitro to ribosomes while in intact virion form, but the RNAs can be translationally activated following the binding of movement protein 1 (MP1) to virus particles. Here, we present the results of the follow-up study targeting two more potexvirus species - the Narcissus mosaic virus and the Potato aucuba mosaic virus. We found encapsidated potexviral RNA to share common translational features in vitro and the MP1 to be potent over homological virions of its "own" species and over heterological virions of other species, as well exhibiting selective specificity. Reciprocal cross-activation is observed among viral species phylogenetically either close or distant. There is direct evidence that MP1 binding to the end of the virion is necessary, but not sufficient, for translational activation of encapsidated RNA.

6.
Acta Naturae ; 3(3): 40-6, 2011 Jul.
Article in English | MEDLINE | ID: mdl-22649692

ABSTRACT

Potato virus X (PVX) and some other potexviruses can be reconstitutedin vitrofrom viral coat protein (CP) and RNA. PVX CP is capable of forming viral ribonucleoprotein complexes (vRNP) not only with homologous, but also with foreign RNAs. This paper presents the structure and properties of vRNP assembledin vitroupon incubation of PVX CP and RNAs of various plant and animal viruses belonging to different taxonomic groups. We have shown that the morphology and translational properties of vRNPs containing foreign (heterologous) RNA are identical to those of homological vRNP (PVX RNA - PVX CP). Our data suggest that the assembly of the "mixed" vRNPin vitrocould be started at the 5'-proximal region of the RNA, producing a helical structure of vRNPs with foreign nucleic acids. The formation of heterologous vRNPin vitrowith PVX CP appears not to require a specific 5' end RNA nucleotide sequence, and the PVX CP seems to be able to pack foreign genetic material of various sizes and compositions into artificial virus-like particles.

7.
Mol Biol (Mosk) ; 40(4): 703-10, 2006.
Article in Russian | MEDLINE | ID: mdl-16913229

ABSTRACT

The efficiency of in vitro translation of potato virus X (PVX) RNA within vRNP complexes assembled from genomic RNA and viral CP was examined. The vRNP particles contain the 5'-proximal RNA segments encapsidated by helically arranged CP head-like portions heterogeneous in length and the CP-free RNA tail. Translation of RNA is completely repressed upon incubation with PVX CP and is accompanied by vRNP particles production. By contrast, translation is activated in vRNPs in vitro assembled using two CP forms, differing in the principals of their N-terminal peptides modification. The N-terminal peptide of PVX CP represents the major phosphorylation site(s) for Thr/Ser-specific protein kinases. It was shown that: (i) CP phosphorylation results in a translational activation of vRNP; (ii) removal of N-terminal peptide from CP abolished activation and CP retains the translation repressing ability. It was suggested that substitution of Ser/Thr residues by non-phosphorylated Ala/Gly in N-terminal peptide of the mutant CP will led to a complete inhibition of vRNP translation. However, opposite results were obtained in our experiments: (i) RNA of such mutant virus (PVX-ST) was efficiently translated within the virions; (ii) RNA of a wild-type (wt) PVX also efficiently translated in mixedly assembled vRNP "wt PVX RNA + PVX-ST CP"; (iii) opposite result (repression of translation) was obtained with "mixed" vRNP (PVX-ST RNA + wtPVX CP). Therefore, the N-terminal peptide located at the surface of the particle and of the particles plays a key role in translation activation of the RNA encapsidated in vRNP and native virions.


Subject(s)
Capsid Proteins/metabolism , Potexvirus/physiology , Protein Biosynthesis , RNA, Viral/metabolism , Capsid Proteins/genetics , Capsid Proteins/ultrastructure , Chenopodium/virology , Datura stramonium/virology , Microscopy, Atomic Force , Mutation , Phosphorylation , Plant Leaves/virology , Potexvirus/metabolism , Protein Structure, Tertiary , RNA, Viral/genetics , RNA, Viral/ultrastructure
8.
J Gen Virol ; 87(Pt 9): 2731-2740, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16894214

ABSTRACT

Different models have been proposed for the nature of the potexvirus transport form that moves from cell to cell over the infected plant: (i) genomic RNA moves as native virions; or (ii) in vitro-assembled non-virion ribonucleoprotein (RNP) complexes consisting of viral RNA, coat protein (CP) and movement protein (MP), termed TGBp1, serve as the transport form in vivo. As the structure of these RNPs has not been elucidated, the products assembled in vitro from potato virus X (PVX) RNA, CP and TGBp1 were characterized. The complexes appeared as single-tailed particles (STPs) with a helical, head-like structure composed of CP subunits located at the 5'-proximal region of PVX RNA; the TGBp1 was bound to the terminal CP molecules of the head. Remarkably, no particular non-virion RNP complexes were observed. These data suggest that the CP-RNA interactions resulting in head formation prevailed over TGBp1-RNA binding upon STP assembly from RNA, CP and TGBp1. STPs could be assembled from the 5' end of PVX RNA and CP in the absence of TGBp1. The translational ability of STPs was characterized in a cell-free translation system. STPs lacking TGBp1 were entirely non-translatable; however, they were rendered translatable by binding of TGBp1 to the end of the head. It is suggested that the RNA-mediated assembly of STPs proceeds via two steps. Firstly, non-translatable CP-RNA STPs are produced, due to encapsidation of the 5'-terminal region. Secondly, the TGBp1 molecules bind to the end of a polar head, resulting in conversion of the STPs into a translatable form.


Subject(s)
Capsid Proteins/metabolism , Potexvirus/metabolism , RNA, Viral/metabolism , Viral Proteins/metabolism , Biological Transport, Active , Capsid Proteins/chemistry , Capsid Proteins/genetics , Macromolecular Substances , Microscopy, Atomic Force , Microscopy, Immunoelectron , Plant Viral Movement Proteins , Potexvirus/genetics , Protein Biosynthesis , RNA, Viral/chemistry , RNA, Viral/genetics , Viral Proteins/chemistry , Viral Proteins/genetics
11.
Virology ; 286(2): 466-74, 2001 Aug 01.
Article in English | MEDLINE | ID: mdl-11485414

ABSTRACT

Previously we showed that encapsidated potato virus X (PVX) RNA is nontranslatable in vitro, but can be converted into a translatable form after binding to PVX particles of PVX-coded movement protein, the product of the first gene of triple gene block (TGBp1). Here we report that a similar effect occurs via in situ phosphorylation of the PVX coat protein (CP) by Ser/Thr protein kinase (PK) C, the mixture of casein kinases I and II or by cytoplasmic PK(s) from Nicotiana glutinosa leaves. Immunochemical analyses indicated that phosphorylation induced conformational changes in PVX CP. The N-terminal region of the PVX CP, rich in Ser and Thr residues, is exposed at the virion surface and can be removed by treatment with trypsin. We showed that (i) trypsin treatment removed the bulk of (32)P-radioactivity from in situ phosphorylated PVX CP, (ii) PVX containing N-terminally truncated CP (PVX-Ptd) failed to be translationally activated by phosphorylation, and (iii) the specific infectivity of PVX-Ptd was reduced. However, the PVX-Ptd RNA remained intact and PVX-Ptd could be translationally activated by the PVX MP TGBp1. We hypothesize that phosphorylation of the parental PVX by cytoplasmic PK(s) in vivo renders PVX RNA translatable in primary inoculated cells, whereas translational activation of the progeny virions destined for plasmodesmata trafficking is triggered by TGBp1.


Subject(s)
Capsid/metabolism , Potexvirus/metabolism , Protein Biosynthesis , RNA, Viral/metabolism , Transcriptional Activation , Capsid/chemistry , Capsid/genetics , Phosphorylation , Potexvirus/genetics , Potexvirus/pathogenicity , Protein Conformation , RNA, Viral/genetics , Solanum tuberosum/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...