Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Neurobiol ; 43(8): 4157-4172, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37689594

ABSTRACT

TRPV1 represents a non-selective transient receptor potential cation channel found not only in sensory neurons, but also in motor nerve endings and in skeletal muscle fibers. However, the role of TRPV1 in the functioning of the neuromuscular junction has not yet been fully established. In this study, the Levator Auris Longus muscle preparations were used to assess the effect of pharmacological activation of TRPV1 channels on neuromuscular transmission. The presence of TRPV1 channels in the nerve terminal and in the muscle fiber was confirmed by immunohistochemistry. It was verified by electrophysiology that the TRPV1 channel agonist capsaicin inhibits the acetylcholine release, and this effect was completely absent after preliminary application of the TRPV1 channel blocker SB 366791. Nerve stimulation revealed an increase of amplitude of isometric tetanic contractions upon application of capsaicin which was also eliminated after preliminary application of SB 366791. Similar data were obtained during direct muscle stimulation. Thus, pharmacological activation of TRPV1 channels affects the functioning of both the pre- and postsynaptic compartment of the neuromuscular junction. A moderate decrease in the amount of acetylcholine released from the motor nerve allows to maintain a reserve pool of the mediator to ensure a longer signal transmission process, and an increase in the force of muscle contraction, in its turn, also implies more effective physiological muscle activity in response to prolonged stimulation. This assumption is supported by the fact that when muscle was indirect stimulated with a fatigue protocol, muscle fatigue was attenuated in the presence of capsaicin.


Subject(s)
Acetylcholine , Capsaicin , Mice , Animals , Capsaicin/pharmacology , Acetylcholine/pharmacology , Neuromuscular Junction , Muscle, Skeletal , TRPV Cation Channels
2.
Biochemistry (Mosc) ; 88(3): 364-373, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37076283

ABSTRACT

Influence of the sympathetic nervous system on the work of skeletal muscles contractile apparatus is now beyond doubt. However, until recently there was no evidence that the endings of sympathetic nerves can be located in close proximity to the neuromuscular synapses, and there is also no reliable data on how much endogenous adrenaline and noradrenaline can be contained near the synaptic contact in skeletal muscles. In this research, using fluorescent analysis, immunohistochemical and enzyme immunoassays the isolated neuromuscular preparations of three skeletal muscles of different functional profiles and containing different types of muscle fibers were examined. Close contact between the sympathetic and motor cholinergic nerve endings and the presence of tyrosine hydroxylase in this area were demonstrated. Concentrations of endogenous adrenaline and noradrenaline in the solution perfusing the neuromuscular preparation were determined under different modes of its functioning. The effects of α and ß adrenoreceptor blockers on the processes of acetylcholine quantal secretion from the motor nerve endings were compared. The data obtained provide evidence for the presence of endogenous catecholamines in the neuromuscular junction region and their role in modulation of the synaptic function.


Subject(s)
Catecholamines , Norepinephrine , Norepinephrine/pharmacology , Epinephrine/pharmacology , Neuromuscular Junction/physiology , Muscle, Skeletal
3.
Brain Res ; 1795: 148072, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36075465

ABSTRACT

We investigated the effects of catecholamines, adrenaline and noradrenaline, as well as ß-adrenoceptor (AR) modulators on a resting membrane potential at the junctional and extrajunctional regions of mouse fast-twitch Levator auris longus muscle. The aim of the study was to find which AR subtypes, signaling molecules and Na,K-ATPase isoforms are involved in the hyperpolarizing action of catecholamines and whether this action could be accompanied by changes in the pump abundance on the sarcolemma. Adrenaline, noradrenaline and specific ß2-AR agonist induced hyperpolarization of both junctional and extrajunctional membrane, but the underlying mechanisms were different. In the junctional membrane the hyperpolarization depended on α2 isoform of the Na,K-ATPase and Gi-protein, whereas in the extrajunctional regions the hyperpolarization mainly relied on α1 isoform of Na,K-ATPase and adenylyl cyclase activities. In both junctional and extrajunctional regions, AR activation caused an increase in Na,K-ATPase abundance in the plasmalemma in a protein kinase A-dependent manner. Thus, the compartment-specific mechanisms are responsible for catecholamine-mediated hyperpolarization in the skeletal muscle.


Subject(s)
Catecholamines , Sodium-Potassium-Exchanging ATPase , Adenylyl Cyclases/metabolism , Animals , Catecholamines/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Epinephrine/metabolism , Mice , Muscle, Skeletal/metabolism , Norepinephrine/metabolism , Protein Isoforms/metabolism , Receptors, Adrenergic/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism
4.
J Vis Exp ; (178)2021 12 01.
Article in English | MEDLINE | ID: mdl-34927611

ABSTRACT

Estimation of the presynaptic calcium level is a key task in studying synaptic transmission since calcium entry into the presynaptic cell triggers a cascade of events leading to neurotransmitter release. Moreover, changes in presynaptic calcium levels mediate the activity of many intracellular proteins and play an important role in synaptic plasticity. Studying calcium signaling is also important for finding ways to treat neurodegenerative diseases. The neuromuscular junction is a suitable model for studying synaptic plasticity, as it has only one type of neurotransmitter. This article describes the method for loading a calcium-sensitive dye through the cut nerve bundle into the mice's motor nerve endings. This method allows the estimation of all parameters related to intracellular calcium changes, such as basal calcium level and calcium transient. Since the influx of calcium from the cell exterior into the nerve terminals and its binding/unbinding to the calcium-sensitive dye occur within the range of a few milliseconds, a speedy imaging system is required to record these events. Indeed, high-speed cameras are commonly used for the registration of fast calcium changes, but they have low image resolution parameters. The protocol presented here for recording calcium transient allows extremely good spatial-temporal resolution provided by confocal microscopy.


Subject(s)
Calcium , Neuromuscular Junction , Animals , Calcium/metabolism , Calcium Signaling , Mice , Microscopy, Confocal , Neuromuscular Junction/physiology , Presynaptic Terminals/physiology , Synaptic Transmission
5.
Int J Mol Sci ; 22(16)2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34445737

ABSTRACT

Cholinergic neurotransmission is a key signal pathway in the peripheral nervous system and in several branches of the central nervous system. Despite the fact that it has been studied extensively for a long period of time, some aspects of its regulation still have not yet been established. One is the relationship between the nicotine-induced autoregulation of acetylcholine (ACh) release with changes in the concentration of presynaptic calcium levels. The mouse neuromuscular junction of m. Levator Auris Longus was chosen as the model of the cholinergic synapse. ACh release was assessed by electrophysiological methods. Changes in calcium transients were recorded using a calcium-sensitive dye. Nicotine hydrogen tartrate salt application (10 µM) decreased the amount of evoked ACh release, while the calcium transient increased in the motor nerve terminal. Both of these effects of nicotine were abolished by the neuronal ACh receptor antagonist dihydro-beta-erythroidine and Cav1 blockers, verapamil, and nitrendipine. These data allow us to suggest that neuronal nicotinic ACh receptor activation decreases the number of ACh quanta released by boosting calcium influx through Cav1 channels.


Subject(s)
Acetylcholine/metabolism , Calcium Channels, L-Type/metabolism , Calcium/metabolism , Motor Neurons/metabolism , Neuromuscular Junction/metabolism , Animals , Electrodiagnosis , Female , In Vitro Techniques , Male , Mice, Inbred BALB C , Nicotine , Potassium Channels, Calcium-Activated/metabolism
6.
Microsc Microanal ; 26(2): 204-210, 2020 04.
Article in English | MEDLINE | ID: mdl-32115011

ABSTRACT

Here, we describe a method of acquisition of fast fluorescent signals with the help of the laser scanning confocal microscope (LSCM). Our method permits an increase in the temporal resolution of acquired signals. The method is based on LSCM recordings of fast fluorescent signals with the shortest achievable time sweep, which are performed with the help of a proprietary algorithm. A series of recordings is made in multiple steps; at each step, the fluorescent signal is incremented by a time interval smaller than the time sweep of the frame of LSCM. The size of the increment determines the achievable time resolution. The convolution of the recorded images results in a signal with the temporal resolution determined by the chosen time increment. This method was applied to register the change in fluorescence (calcium transient) of calcium dye preloaded into peripheral nerve endings by electrical stimulation of the motor nerve. Calculated parameters of the calcium transient were identical to the parameters obtained earlier with the help of a high-speed camera and photodiode. We conclude that the method described here can be applied for the registration of fast fluorescent signals by LSCM with a high spatial and temporal resolution.

SELECTION OF CITATIONS
SEARCH DETAIL
...