Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Polymers (Basel) ; 15(20)2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37896340

ABSTRACT

In the present study, the synthesis of oxygen-containing quaternary phosphonium salts (oxy-QPSs) was described. Within this work, structure-property relationships of oxy-QPSs were estimated by systematic analysis of physical-chemical properties. The influence of the oxygen-containing substituent was examined by comparing the properties of oxy-QPSs in homology series as well as with phosphonium analog-included alkyl side chains. The crystal structure analysis showed that the oxygen introduction influences the conformation of the side chain of the oxy-QPS. It was found that oxy-QPSs, using an aprotic co-solvent, dimethylsulfoxide (DMSO), can dissolve microcrystalline cellulose. The cellulose dissolution in oxy-QPSs appeared to be dependent on the functional group in the cation and anion nature. For the selected conditions, dissolution of up to 5 wt% of cellulose was observed. The antimicrobial activity of oxy-QPSs under study was expected to be low. The biocompatibility of oxy-QPSs with fermentative microbes was tested on non-pathogenic Saccharomyces cerevisiae, Lactobacillus plantarum, and Bacillus subtilis. This reliably allows one to safely address the combined biomass destruction and enzyme hydrolysis processes in one pot.

2.
Small ; 19(43): e2302999, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37381097

ABSTRACT

In this work, using a combination of scanning and transmission electron microscopy (SEM and TEM), the transformations of palladium-containing species in imidazolium ionic liquids in reaction mixtures of the Mizoroki-Heck reaction and in related organic media are studied to understand a challenging question of the relative reactivity of organic halides as key substrates in modern catalytic technologies. The microscopy technique detects the formation of a stable nanosized palladium phase under the action of an aryl (Ar) halide capable of forming microcompartments in an ionic liquid. For the first time, the correlation between the reactivity of the aryl halide and the microdomain structure is observed: Ar-I (well-developed microdomains) > Ar-Br (microphase present) > Ar-Cl (minor amount of microphase). Previously, it is assumed that molecular level factors, namely, carbon-halogen bond strength and the ease of bond breakage, are the sole factors determining the reactivity of aryl halides in catalytic transformations. The present work reports a new factor connected with the nature of the organic substrates used and their ability to form a microdomain structure and concentrate metallic species, highlighting the importance of considering both the molecular and microscale properties of the reaction mixtures.

3.
Int J Mol Sci ; 23(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35008507

ABSTRACT

Structure-activity relationships are important for the design of biocides and sanitizers. During the spread of resistant strains of pathogenic microbes, insights into the correlation between structure and activity become especially significant. The most commonly used biocides are nitrogen-containing compounds; the phosphorus-containing ones have been studied to a lesser extent. In the present study, a broad range of sterically hindered quaternary phosphonium salts (QPSs) based on tri-tert-butylphosphine was tested for their activity against Gram-positive (Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria and fungi (Candida albicans, Trichophyton mentagrophytes var. gypseum). The cation structure was confirmed to determine their biological activity. A number of QPSs not only exhibit high activity against both Gram-positive and -negative bacteria but also possess antifungal properties. Additionally, the hemolytic and cytotoxic properties of QPSs were determined using blood and a normal liver cell line, respectively. The results show that tri-tert-butyl(n-dodecyl)phosphonium and tri-tert-butyl(n-tridecyl)phosphonium bromides exhibit both low cytotoxicity against normal human cells and high antimicrobial activity against bacteria, including methicillin-resistant strains S. aureus (MRSA). The mechanism of QPS action on microbes is discussed. Due to their high selectivity for pathogens, sterically hindered QPSs could serve as effective tunable biocides.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/pharmacology , Bacteria/drug effects , Cell Line , Fungi/drug effects , Humans , Structure-Activity Relationship
4.
Nanomaterials (Basel) ; 10(12)2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33316907

ABSTRACT

A new family of sterically hindered alkyl(tri-tert-butyl) phosphonium salts (n-CnH2n+1 with n = 2, 4, 6, 8, 10, 12, 14, 16, 18, 20) was synthesized and evaluated as stabilizers for the formation of palladium nanoparticles (PdNPs), and the prepared PdNPs, stabilized by a series of phosphonium salts, were applied as catalysts of the Suzuki cross-coupling reaction. All investigated phosphonium salts were found to be excellent stabilizers of metal nanoparticles of small catalytically active size with a narrow size distribution. In addition, palladium nanoparticles exhibited exceptional stability: the presence of phosphonium salts prevented agglomeration and precipitation during the catalytic reaction.

5.
Polymers (Basel) ; 10(12)2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30961332

ABSTRACT

Pectin is a polymer with a core of alternating α-1,4-linked d-galacturonic acid and α-1,2-l-rhamnose units, as well as a variety of neutral sugars such as arabinose, galactose, and lesser amounts of other sugars. Currently, native pectins have been compared to modified ones due to the development of natural medicines and health products. In this review, the results of a study of the bioactivity of pectic polysaccharides, including its various pharmacological applications, such as its immunoregulatory, anti-inflammatory, hypoglycemic, antibacterial, antioxidant and antitumor activities, have been summarized. The potential of pectins to contribute to the enhancement of drug delivery systems has been observed.

6.
Int J Chron Obstruct Pulmon Dis ; 12: 3255-3262, 2017.
Article in English | MEDLINE | ID: mdl-29138554

ABSTRACT

BACKGROUND: The high prevalence of COPD in the Russian Federation has been demonstrated in several epidemiological studies. However, there are still no data on the clinical characteristics of these patients according to Global Initiative for Chronic Obstructive Lung Disease (GOLD) groups and phenotypes, which could provide additional understanding of the burden of COPD, routine clinical practice, and ways to improve the treatment of patients with COPD in Russia. PATIENTS AND METHODS: SUPPORT was an observational multicenter study designed to obtain data about the distribution of patients with previously diagnosed COPD according to the severity of bronchial obstruction, symptom severity, risk of exacerbation, COPD phenotypes, and treatment of COPD. We included patients with a previous diagnosis of COPD who visited one of 33 primary-care centers for any reason in 23 cities in Russia. RESULTS: Among the 1,505 patients with a previous diagnosis of COPD who attended the primary-care centers and were screened for the study, 1,111 had a spirometry-confirmed diagnosis and were included in the analysis. Up to 53% of the patients had severe or very severe COPD (GOLD stages III-IV), and 74.3% belonged to the GOLD D group. The majority of patients were frequent exacerbators (exacerbators with chronic bronchitis [37.3%], exacerbators without chronic bronchitis [14%]), while 35.8% were nonexacerbators and 12.9% had asthma-COPD overlap. Among the GOLD D group patients, >20% were treated with only short-acting bronchodilators. CONCLUSION: COPD is still misdiagnosed in primary care in Russia. COPD patients in primary care are usually GOLD D with frequent exacerbations and are often treated with only short-acting bronchodilators.


Subject(s)
Bronchodilator Agents/administration & dosage , Lung/physiopathology , Pulmonary Disease, Chronic Obstructive/diagnosis , Spirometry , Terminology as Topic , Adrenal Cortex Hormones/administration & dosage , Aged , Comorbidity , Cross-Sectional Studies , Diagnostic Errors , Disease Progression , Female , Humans , Lung/drug effects , Male , Middle Aged , Phenotype , Predictive Value of Tests , Pulmonary Disease, Chronic Obstructive/classification , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/physiopathology , Reproducibility of Results , Risk Factors , Russia , Severity of Illness Index , Treatment Outcome
7.
Phys Chem Chem Phys ; 16(38): 20672-80, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-25158763

ABSTRACT

Analysis of infrared spectra of palladium nanoparticles (NPs) immersed in the tri-tert-butyl-R-phosphonium-based ionic liquids (ILs) demonstrates that both cations and anions of the ILs interact with the NPs. According to quantum-chemical simulations of these interactions, the binding energy of anions to the Pd6 cluster, taken as a minimal-size model of the NPs, increases from ∼6 to ∼27 kcal mol(-1) in the order [PF6](-)≈ [BF4](-) < [Tf2N](-) < [OTf](-) < [Br](-)≪ [TFA](-). In contrast, the binding energy for all types of the [Bu(t)3PR](+) cations slightly varies at about ∼22 kcal mol(-1) only moderately depending on the choice of the R moiety (n-pentyl, 2-hydroxyethyl, 2-methoxyethyl, 2-ethoxy-2-oxoethyl). As a result, the energies of interaction between a Pd6 cluster and various ion pairs, formed by the abovementioned counter-ions, follow the order found for the anions and vary from ∼24 to ∼47 kcal mol(-1). These values are smaller than the energy of addition of a Pd atom to a Pdn cluster (∼58 kcal mol(-1)), which suggests kinetic stabilization of the NPs in phosphonium-based ILs rather than thermodynamic stabilization. The results are qualitatively similar to the trends found earlier for interactions between palladium clusters and components of imidazolium-based ILs, in spite of much larger contributions of the London dispersion forces to the binding of the [Bu(t)3PR](+) cations to the cluster (up to 80%) relative to the case of 1-R-3-methylimidazolium cations (up to 40%).


Subject(s)
Ionic Liquids/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Models, Chemical , Palladium/chemistry , Phosphines/chemistry , Spectrophotometry, Infrared/methods , Computer Simulation , Ions/chemistry , Models, Molecular , Quantum Theory , Solvents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...