Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 8(29): 13997-4003, 2016 Aug 07.
Article in English | MEDLINE | ID: mdl-27121463

ABSTRACT

The rare-earth element dysprosium (Dy) is an important additive that increases the magnetocrystalline anisotropy of neodymium magnets and additionally prevents from demagnetizing at high temperatures. Therefore, it is one of the most important elements for high-tech industries and is mainly used in permanent magnetic applications, for example in electric vehicles, industrial motors and direct-drive wind turbines. In an effort to develop a more efficient electrochemical technique for depositing Dy on Nd-magnets in contrast to commonly used costly physical vapor deposition, we investigated the electrochemical behavior of dysprosium(iii) trifluoromethanesulfonate in a custom-made guanidinium-based room-temperature ionic liquid (RTIL). We first examined the electrodeposition of Dy on an Au(111) model electrode. The investigation was carried out by means of cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS). The initial stages of metal deposition were followed by in situ scanning tunneling microscopy (STM). CV measurements revealed a large cathodic reduction peak, which corresponds to the growth of monoatomic high islands, based on STM images taken during the initial stages of deposition. XPS identified these deposited islands as dysprosium. A similar reduction peak was also observed on an Nd-Fe-B substrate, and positively identified as deposited Dy using XPS. Finally, we varied the concentration of the Dy precursor, electrolyte flow and temperature during Dy deposition and demonstrated that each of these parameters could be used to increase the thickness of the Dy deposit, suggesting that these parameters could be tuned simultaneously in a temperature-controlled flow cell to enhance the thickness of the Dy layer.

2.
Phys Chem Chem Phys ; 18(6): 4961-5, 2016 Feb 14.
Article in English | MEDLINE | ID: mdl-26807860

ABSTRACT

In this study titanium isopropoxide was dissolved in 1-butyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide (BMITFSI) and further in a custom-made guanidinium-based ionic liquid (N11N11NpipGuaTFSI). Electrochemical investigations were carried out by means of cyclic voltammetry (CV) and the initial stages of metal deposition were followed by in situ scanning tunneling microscopy (STM). For BMITFSI we found one large cathodic reduction peak at a potential of -1.2 V vs. Pt, corresponding to the growth of monoatomic high islands. The obtained deposit was identified as elemental titanium by Auger Electron Spectroscopy (AES). Furthermore, we found a corresponding anodic peak at -0.3 V vs. Pt, which is associated with the dissolution of the islands. This observation leads to the assumption that titanium deposition from the imidazolium-based room-temperature ionic liquid (RTIL) proceeds in a one-step electron transfer. In contrast, for the guanidinium-based RTIL we found several peaks during titanium reduction and oxidation, which indicates a multi-step electron transfer in this alternative electrolyte.

3.
Phys Chem Chem Phys ; 14(30): 10647-52, 2012 Aug 14.
Article in English | MEDLINE | ID: mdl-22744216

ABSTRACT

Five hexaalkylguanidinium-based ionic liquids have been synthesised, and based on their cyclic voltammograms the most suited one, N,N-dibutyl-N',N'-diethyl-N'',N''-dimethylguanidinium bis(trifluoromethylsulfonyl)imide, has been chosen for electrochemical studies. The surface interaction of this room-temperature ionic liquid with single crystalline gold surfaces (Au(100) and Au(111)) has been investigated using cyclic voltammetry, impedance spectroscopy and in situ scanning tunnelling microscopy (STM). The interfacial capacitance was found to be very low; STM measurements revealed the hex-reconstruction and herringbone reconstruction for Au(100) and for Au(111), respectively, at negative potentials; that is, at these potentials no hints for ad-structures of the cation could be found.

SELECTION OF CITATIONS
SEARCH DETAIL
...