Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Soc Mass Spectrom ; 26(2): 292-304, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25588720

ABSTRACT

Technology advances in the field of small, unmanned aerial vehicles and their integration with a variety of sensor packages and instruments, such as miniature mass spectrometers, have enhanced the possibilities and applications of what are now called unmanned aerial systems (UAS). With such technology, in situ and proximal remote sensing measurements of volcanic plumes are now possible without risking the lives of scientists and personnel in charge of close monitoring of volcanic activity. These methods provide unprecedented, and otherwise unobtainable, data very close in space and time to eruptions, to better understand the role of gas volatiles in magma and subsequent eruption products. Small mass spectrometers, together with the world's smallest turbo molecular pump, have being integrated into NASA and University of Costa Rica UAS platforms to be field-tested for in situ volcanic plume analysis, and in support of the calibration and validation of satellite-based remote sensing data. These new UAS-MS systems are combined with existing UAS flight-tested payloads and assets, such as temperature, pressure, relative humidity, SO2, H2S, CO2, GPS sensors, on-board data storage, and telemetry. Such payloads are capable of generating real time 3D concentration maps of the Turrialba volcano active plume in Costa Rica, while remote sensing data are simultaneously collected from the ASTER and OMI space-borne instruments for comparison. The primary goal is to improve the understanding of the chemical and physical properties of emissions for mitigation of local volcanic hazards, for the validation of species detection and abundance of retrievals based on remote sensing, and to validate transport models.

2.
J Am Soc Mass Spectrom ; 19(10): 1411-8, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18620866

ABSTRACT

The visualization of hazardous gaseous emissions at volcanoes using in-situ mass spectrometry (MS) is a key step towards a better comprehension of the geophysical phenomena surrounding eruptive activity. In-situ data consisting of helium, carbon dioxide, sulfur dioxide, and other gas species, were acquired with a quadrupole based MS system. Global position systems (GPS) and MS data were plotted on ground imagery, topography, and remote sensing data collected by a host of instruments during the second Costa Rica Airborne Research and Technology Applications (CARTA) mission. This combination of gas and imaging data allowed three-dimensional (3D) visualization of the volcanic plume and the mapping of gas concentration at several volcanic structures and urban areas. This combined set of data has demonstrated a better tool to assess hazardous conditions by visualizing and modeling of possible scenarios of volcanic activity. The MS system is used for in-situ measurement of 3D gas concentrations at different volcanic locations with three different transportation platforms: aircraft, auto, and hand-carried. The demonstration for urban contamination mapping is also presented as another possible use for the MS system.


Subject(s)
Gases/analysis , Mass Spectrometry/instrumentation , Mass Spectrometry/methods , Volcanic Eruptions/analysis , Air Pollution/analysis , Aircraft , Automobiles , Carbon Dioxide/analysis , Costa Rica , Sulfur Dioxide/analysis , Water/analysis
3.
J Am Soc Mass Spectrom ; 16(3): 422-30, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15734337

ABSTRACT

A collision algorithm was used with SimIon to evaluate collision-mediated ion ejection mechanisms in the ICR MS experiment. These mechanisms were characterized based on kinetic energy, ion mass, applied trapping potential, and collision gas mass. It was found that there are three collision-based energy regimes for ion loss from a trapped-ion cell. The first region is characterized by low initial cyclotron kinetic energy, a radial ejection mode, and a very high collision ratio (>100 collisions per ejection). The second region is characterized by a medium to high initial cyclotron kinetic energy leading to axial ejection at low collision ratio (1 to 10 collisions per ejection). The third region is characterized by a high initial cyclotron kinetic energy, a radial ejection mode, and a collision ratio of unity. It was also determined that there is a radial cyclotron mode limit, approximately 40% of the cell radius, after which an ion is ejected after a single collision. This has important consequences on the damping of the FTICR signal, various cooling techniques, ion activation techniques, and the remeasurement experiment.

4.
J Am Soc Mass Spectrom ; 13(8): 1004-12, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12216728

ABSTRACT

This work is aimed at understanding the aspects of designing a miniature mass spectrometer (MS) system. Several types of small MS systems are evaluated and discussed, including linear quadrupole, quadrupole ion trap, time of flight, and sector. Analysis of hydrogen, helium, oxygen, and argon in a nitrogen background with the concentrations of the components of interest ranging from 0 to 5000 parts per million (ppm). The performance of each system in terms of accuracy, precision, limits of detection, response time, recovery time, scan rate, size, and weight is assessed. The relative accuracies of the systems varied from <1% to approximately 40% with an average below 10%. Relative precisions varied from 1% to 20%, with an average below 5%. The detection limits had a large distribution, ranging from 0.2 to 170 ppm. The systems had a diverse response time ranging from 4 to 210 s, as did the recovery time with a 6-to-210-s distribution. Most instruments had scan times near 1 s; however, one instrument exceeded 13 s. System weights varied from 9 to 52 kg and sizes ranged from 15 x 10(3) cm3 to 110 x 10(3) cm3. A performance scale is set up to rank each system, and an overall performance score is given to each system.

SELECTION OF CITATIONS
SEARCH DETAIL
...