Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Oncotarget ; 13: 918-943, 2022.
Article in English | MEDLINE | ID: mdl-35937500

ABSTRACT

We propose a hypothesis of a mechanism linking cellular aging to cellular quiescence in chronologically aging budding yeast. Our hypothesis posits that this mechanism integrates four different processes, all of which are initiated after yeast cells cultured in a medium initially containing glucose consume it. Quiescent cells that develop in these cultures can be separated into the high- and low-density sub-populations of different buoyant densities. Process 1 of the proposed mechanism consists of a cell-cycle arrest in the G1 phase and leads to the formation of high-density quiescent cells. Process 2 results in converting high-density quiescent cells into low-density quiescent cells. Processes 3 and 4 cause a fast or slow decline in the quiescence of low- or high-density quiescent cells, respectively. Here, we tested our hypothesis by assessing how four different geroprotectors influence the four processes that could link cellular aging to cellular quiescence. We found that these geroprotectors differently affect processes 1 and 2 and decelerate processes 3 and 4. We also found that a rise in trehalose within quiescent yeast contributes to chronological aging and quiescence maintenance. These data collectively provide conclusive evidence for a mechanistic link between cellular aging and cellular quiescence.


Subject(s)
Saccharomyces cerevisiae , Saccharomycetales , Cellular Senescence , Glucose , Humans , Senotherapeutics , Trehalose
2.
Oncotarget ; 11(23): 2182-2203, 2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32577164

ABSTRACT

In a quest for previously unknown geroprotective natural chemicals, we used a robust cell viability assay to search for commercially available plant extracts that can substantially prolong the chronological lifespan of budding yeast. Many of these plant extracts have been used in traditional Chinese and other herbal medicines or the Mediterranean and other customary diets. Our search led to a discovery of fifteen plant extracts that significantly extend the longevity of chronologically aging yeast not limited in calorie supply. We show that each of these longevity-extending plant extracts is a geroprotector that decreases the rate of yeast chronological aging and promotes a hormetic stress response. We also show that each of the fifteen geroprotective plant extracts mimics the longevity-extending, stress-protecting, metabolic and physiological effects of a caloric restriction diet but if added to yeast cultured under non-caloric restriction conditions. We provide evidence that the fifteen geroprotective plant extracts exhibit partially overlapping effects on a distinct set of longevity-defining cellular processes. These effects include a rise in coupled mitochondrial respiration, an altered age-related chronology of changes in reactive oxygen species abundance, protection of cellular macromolecules from oxidative damage, and an age-related increase in the resistance to long-term oxidative and thermal stresses.

3.
Oncotarget ; 10(56): 5780-5816, 2019 Oct 08.
Article in English | MEDLINE | ID: mdl-31645900

ABSTRACT

We have recently found that PE21, an extract from the white willow Salix alba, slows chronological aging and prolongs longevity of the yeast Saccharomyces cerevisiae more efficiently than any of the previously known pharmacological interventions. Here, we investigated mechanisms through which PE21 delays yeast chronological aging and extends yeast longevity. We show that PE21 causes a remodeling of lipid metabolism in chronologically aging yeast, thereby instigating changes in the concentrations of several lipid classes. We demonstrate that such changes in the cellular lipidome initiate three mechanisms of aging delay and longevity extension. The first mechanism through which PE21 slows aging and prolongs longevity consists in its ability to decrease the intracellular concentration of free fatty acids. This postpones an age-related onset of liponecrotic cell death promoted by excessive concentrations of free fatty acids. The second mechanism of aging delay and longevity extension by PE21 consists in its ability to decrease the concentrations of triacylglycerols and to increase the concentrations of glycerophospholipids within the endoplasmic reticulum membrane. This activates the unfolded protein response system in the endoplasmic reticulum, which then decelerates an age-related decline in protein and lipid homeostasis and slows down an aging-associated deterioration of cell resistance to stress. The third mechanisms underlying aging delay and longevity extension by PE21 consists in its ability to change lipid concentrations in the mitochondrial membranes. This alters certain catabolic and anabolic processes in mitochondria, thus amending the pattern of aging-associated changes in several key aspects of mitochondrial functionality.

4.
Oncotarget ; 9(79): 34945-34971, 2018 Oct 09.
Article in English | MEDLINE | ID: mdl-30405886

ABSTRACT

All presently known geroprotective chemical compounds of plant and microbial origin are caloric restriction mimetics because they can mimic the beneficial lifespan- and healthspan-extending effects of caloric restriction diets without the need to limit calorie supply. We have discovered a geroprotective chemical compound of mammalian origin, a bile acid called lithocholic acid, which can delay chronological aging of the budding yeast Saccharomyces cerevisiae under caloric restriction conditions. Here, we investigated mechanisms through which lithocholic acid can delay chronological aging of yeast limited in calorie supply. We provide evidence that lithocholic acid causes a stepwise development and maintenance of an aging-delaying cellular pattern throughout the entire chronological lifespan of yeast cultured under caloric restriction conditions. We show that lithocholic acid stimulates the aging-delaying cellular pattern and preserves such pattern because it specifically modulates the spatiotemporal dynamics of a complex cellular network. We demonstrate that this cellular network integrates certain pathways of lipid and carbohydrate metabolism, some intercompartmental communications, mitochondrial morphology and functionality, and liponecrotic and apoptotic modes of aging-associated cell death. Our findings indicate that lithocholic acid prolongs longevity of chronologically aging yeast because it decreases the risk of aging-associated cell death, thus increasing the chance of elderly cells to survive.

5.
Oncotarget ; 9(22): 16163-16184, 2018 Mar 23.
Article in English | MEDLINE | ID: mdl-29662634

ABSTRACT

A dietary regimen of caloric restriction delays aging in evolutionarily distant eukaryotes, including the budding yeast Saccharomyces cerevisiae. Here, we assessed how caloric restriction influences morphological, biochemical and cell biological properties of chronologically aging yeast advancing through different stages of the aging process. Our findings revealed that this low-calorie diet slows yeast chronological aging by mechanisms that coordinate the spatiotemporal dynamics of various cellular processes before entry into a non-proliferative state and after such entry. Caloric restriction causes a stepwise establishment of an aging-delaying cellular pattern by tuning a network that assimilates the following: 1) pathways of carbohydrate and lipid metabolism; 2) communications between the endoplasmic reticulum, lipid droplets, peroxisomes, mitochondria and the cytosol; and 3) a balance between the processes of mitochondrial fusion and fission. Through different phases of the aging process, the caloric restriction-dependent remodeling of this intricate network 1) postpones the age-related onsets of apoptotic and liponecrotic modes of regulated cell death; and 2) actively increases the chance of cell survival by supporting the maintenance of cellular proteostasis. Because caloric restriction decreases the risk of cell death and actively increases the chance of cell survival throughout chronological lifespan, this dietary intervention extends longevity of chronologically aging yeast.

6.
Oncotarget ; 8(41): 69328-69350, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-29050207

ABSTRACT

A yeast culture grown in a nutrient-rich medium initially containing 2% glucose is not limited in calorie supply. When yeast cells cultured in this medium consume glucose, they undergo cell cycle arrest at a checkpoint in late G1 and differentiate into quiescent and non-quiescent cell populations. Studies of such differentiation have provided insights into mechanisms of yeast chronological aging under conditions of excessive calorie intake. Caloric restriction is an aging-delaying dietary intervention. Here, we assessed how caloric restriction influences the differentiation of chronologically aging yeast cultures into quiescent and non-quiescent cells, and how it affects their properties. We found that caloric restriction extends yeast chronological lifespan via a mechanism linking cellular aging to cell cycle regulation, maintenance of quiescence, entry into a non-quiescent state and survival in this state. Our findings suggest that caloric restriction delays yeast chronological aging by causing specific changes in the following: 1) a checkpoint in G1 for cell cycle arrest and entry into a quiescent state; 2) a growth phase in which high-density quiescent cells are committed to become low-density quiescent cells; 3) the differentiation of low-density quiescent cells into low-density non-quiescent cells; and 4) the conversion of high-density quiescent cells into high-density non-quiescent cells.

7.
Oncotarget ; 8(19): 30672-30691, 2017 May 09.
Article in English | MEDLINE | ID: mdl-28410198

ABSTRACT

We have previously found that exogenously added lithocholic acid delays yeast chronological aging. We demonstrated that lithocholic acid enters the yeast cell, is sorted to mitochondria, resides in both mitochondrial membranes, changes the relative concentrations of different membrane phospholipids, triggers changes in the concentrations of many mitochondrial proteins, and alters some key aspects of mitochondrial functionality. We hypothesized that the lithocholic acid-driven changes in mitochondrial lipidome may have a causal role in the remodeling of mitochondrial proteome, which may in turn alter the functional state of mitochondria to create a mitochondrial pattern that delays yeast chronological aging. Here, we test this hypothesis by investigating how the ups1Δ, ups2Δ and psd1Δ mutations that eliminate enzymes involved in mitochondrial phospholipid metabolism influence the mitochondrial lipidome. We also assessed how these mutations affect the mitochondrial proteome, influence mitochondrial functionality and impinge on the efficiency of aging delay by lithocholic acid. Our findings provide evidence that 1) lithocholic acid initially creates a distinct pro-longevity pattern of mitochondrial lipidome by proportionally decreasing phosphatidylethanolamine and cardiolipin concentrations to maintain equimolar concentrations of these phospholipids, and by increasing phosphatidic acid concentration; 2) this pattern of mitochondrial lipidome allows to establish a specific, aging-delaying pattern of mitochondrial proteome; and 3) this pattern of mitochondrial proteome plays an essential role in creating a distinctive, geroprotective pattern of mitochondrial functionality.


Subject(s)
Lipid Metabolism , Lithocholic Acid/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Proteome , Yeasts/physiology , Gene Expression Regulation, Fungal , Genes, Fungal , Mitochondria/genetics , Mitochondrial Membranes/metabolism , Mutation , Phospholipids/metabolism
8.
Oncotarget ; 7(13): 16542-66, 2016 Mar 29.
Article in English | MEDLINE | ID: mdl-26918729

ABSTRACT

We discovered six plant extracts that increase yeast chronological lifespan to a significantly greater extent than any of the presently known longevity-extending chemical compounds. One of these extracts is the most potent longevity-extending pharmacological intervention yet described. We show that each of the six plant extracts is a geroprotector which delays the onset and decreases the rate of yeast chronological aging by eliciting a hormetic stress response. We also show that each of these extracts has different effects on cellular processes that define longevity in organisms across phyla. These effects include the following: 1) increased mitochondrial respiration and membrane potential; 2) augmented or reduced concentrations of reactive oxygen species; 3) decreased oxidative damage to cellular proteins, membrane lipids, and mitochondrial and nuclear genomes; 4) enhanced cell resistance to oxidative and thermal stresses; and 5) accelerated degradation of neutral lipids deposited in lipid droplets. Our findings provide new insights into mechanisms through which chemicals extracted from certain plants can slow biological aging.


Subject(s)
Mitochondria/drug effects , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Reactive Oxygen Species/antagonists & inhibitors , Saccharomyces cerevisiae/drug effects , Lipid Droplets/drug effects , Lipid Droplets/metabolism , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Mitochondria/physiology , Oxidation-Reduction/drug effects , Plants/chemistry , Plants/classification , Reactive Oxygen Species/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/physiology , Species Specificity , Time Factors
9.
Oncotarget ; 7(5): 5204-25, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26636650

ABSTRACT

A recently conducted chemical genetic screen for pharmaceuticals that can extend longevity of the yeast Saccharomyces cerevisiae has identified lithocholic acid as a potent anti-aging molecule. It was found that this hydrophobic bile acid is also a selective anti-tumor chemical compound; it kills different types of cultured cancer cells if used at concentrations that do not compromise the viability of non-cancerous cells. These studies have revealed that yeast can be successfully used as a model organism for high-throughput screens aimed at the discovery of selectively acting anti-tumor small molecules. Two metabolic traits of rapidly proliferating fermenting yeast, namely aerobic glycolysis and lipogenesis, are known to be similar to those of cancer cells. The mechanisms underlying these key metabolic features of cancer cells and fermenting yeast have been established; such mechanisms are discussed in this review. We also suggest how a yeast-based chemical genetic screen can be used for the high-throughput development of selective anti-tumor pharmaceuticals that kill only cancer cells. This screen consists of searching for chemical compounds capable of increasing the abundance of membrane lipids enriched in unsaturated fatty acids that would therefore be toxic only to rapidly proliferating cells, such as cancer cells and fermenting yeast.


Subject(s)
Lipid Metabolism/genetics , Membrane Lipids/metabolism , Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/genetics , Saccharomyces cerevisiae/metabolism , Humans , Neoplasms/metabolism
10.
Cell Cycle ; 14(11): 1643-56, 2015.
Article in English | MEDLINE | ID: mdl-25839782

ABSTRACT

We have previously revealed that exogenously added lithocholic bile acid (LCA) extends the chronological lifespan of the yeast Saccharomyces cerevisiae, accumulates in mitochondria and alters mitochondrial membrane lipidome. Here, we use quantitative mass spectrometry to show that LCA alters the age-related dynamics of changes in levels of many mitochondrial proteins, as well as numerous proteins in cellular locations outside of mitochondria. These proteins belong to 2 regulons, each modulated by a different mitochondrial dysfunction; we call them a partial mitochondrial dysfunction regulon and an oxidative stress regulon. We found that proteins constituting these regulons (1) can be divided into several "clusters", each of which denotes a distinct type of partial mitochondrial dysfunction that elicits a different signaling pathway mediated by a discrete set of transcription factors; (2) exhibit 3 different patterns of the age-related dynamics of changes in their cellular levels; and (3) are encoded by genes whose expression is regulated by the transcription factors Rtg1p/Rtg2p/Rtg3p, Sfp1p, Aft1p, Yap1p, Msn2p/Msn4p, Skn7p and Hog1p, each of which is essential for longevity extension by LCA. Our findings suggest that LCA-driven changes in mitochondrial lipidome alter mitochondrial proteome and functionality, thereby enabling mitochondria to operate as signaling organelles that orchestrate an establishment of an anti-aging transcriptional program for many longevity-defining nuclear genes. Based on these findings, we propose a model for how such LCA-driven changes early and late in life of chronologically aging yeast cause a stepwise development of an anti-aging cellular pattern and its maintenance throughout lifespan.


Subject(s)
Gene Expression Regulation/drug effects , Lithocholic Acid/pharmacology , Longevity/drug effects , Membrane Lipids/metabolism , Mitochondrial Proteins/metabolism , Models, Biological , Saccharomyces cerevisiae/metabolism , Signal Transduction/physiology , Lithocholic Acid/pharmacokinetics , Mass Spectrometry , Regulon/genetics , Signal Transduction/genetics , Time Factors
11.
Molecules ; 20(4): 6544-72, 2015 Apr 13.
Article in English | MEDLINE | ID: mdl-25871373

ABSTRACT

Phytochemicals are structurally diverse secondary metabolites synthesized by plants and also by non-pathogenic endophytic microorganisms living within plants. Phytochemicals help plants to survive environmental stresses, protect plants from microbial infections and environmental pollutants, provide them with a defense from herbivorous organisms and attract natural predators of such organisms, as well as lure pollinators and other symbiotes of these plants. In addition, many phytochemicals can extend longevity in heterotrophic organisms across phyla via evolutionarily conserved mechanisms. In this review, we discuss such mechanisms. We outline how structurally diverse phytochemicals modulate a complex network of signaling pathways that orchestrate a distinct set of longevity-defining cellular processes. This review also reflects on how the release of phytochemicals by plants into a natural ecosystem may create selective forces that drive the evolution of longevity regulation mechanisms in heterotrophic organisms inhabiting this ecosystem. We outline the most important unanswered questions and directions for future research in this vibrant and rapidly evolving field.


Subject(s)
Longevity , Phytochemicals/chemistry , Phytochemicals/metabolism , Secondary Metabolism , Animals , Biological Evolution , Ecosystem , Humans
12.
Int J Mol Sci ; 16(3): 5528-54, 2015 Mar 11.
Article in English | MEDLINE | ID: mdl-25768339

ABSTRACT

Mitochondrial functionality is vital to organismal physiology. A body of evidence supports the notion that an age-related progressive decline in mitochondrial function is a hallmark of cellular and organismal aging in evolutionarily distant eukaryotes. Studies of the baker's yeast Saccharomyces cerevisiae, a unicellular eukaryote, have led to discoveries of genes, signaling pathways and chemical compounds that modulate longevity-defining cellular processes in eukaryotic organisms across phyla. These studies have provided deep insights into mechanistic links that exist between different traits of mitochondrial functionality and cellular aging. The molecular mechanisms underlying the essential role of mitochondria as signaling organelles in yeast aging have begun to emerge. In this review, we discuss recent progress in understanding mechanisms by which different functional states of mitochondria define yeast longevity, outline the most important unanswered questions and suggest directions for future research.


Subject(s)
Mitochondria/metabolism , Mitochondrial Turnover , Saccharomyces cerevisiae/growth & development , Cell Division , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism
13.
Cell Cycle ; 13(21): 3336-49, 2014.
Article in English | MEDLINE | ID: mdl-25485579

ABSTRACT

Recent findings suggest that evolutionarily distant organisms share the key features of the aging process and exhibit similar mechanisms of its modulation by certain genetic, dietary and pharmacological interventions. The scope of this review is to analyze mechanisms that in the yeast Saccharomyces cerevisiae underlie: (1) the replicative and chronological modes of aging; (2) the convergence of these 2 modes of aging into a single aging process; (3) a programmed differentiation of aging cell communities in liquid media and on solid surfaces; and (4) longevity-defining responses of cells to some chemical compounds released to an ecosystem by other organisms populating it. Based on such analysis, we conclude that all these mechanisms are programs for upholding the long-term survival of the entire yeast population inhabiting an ecological niche; however, none of these mechanisms is a "program of aging" - i.e., a program for progressing through consecutive steps of the aging process.


Subject(s)
Saccharomycetales/metabolism , Endoplasmic Reticulum/metabolism , Fungal Proteins/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Protein Serine-Threonine Kinases/metabolism , Saccharomycetales/growth & development , Unfolded Protein Response
14.
Cell Cycle ; 13(23): 3707-26, 2014.
Article in English | MEDLINE | ID: mdl-25483081

ABSTRACT

An exposure of the yeast Saccharomyces cerevisiae to exogenous palmitoleic acid (POA) elicits "liponecrosis," a mode of programmed cell death (PCD) which differs from the currently known PCD subroutines. Here, we report the following mechanism for liponecrotic PCD. Exogenously added POA is incorporated into POA-containing phospholipids that then amass in the endoplasmic reticulum membrane, mitochondrial membranes and the plasma membrane. The buildup of the POA-containing phospholipids in the plasma membrane reduces the level of phosphatidylethanolamine in its extracellular leaflet, thereby increasing plasma membrane permeability for small molecules and committing yeast to liponecrotic PCD. The excessive accumulation of POA-containing phospholipids in mitochondrial membranes impairs mitochondrial functionality and causes the excessive production of reactive oxygen species in mitochondria. The resulting rise in cellular reactive oxygen species above a critical level contributes to the commitment of yeast to liponecrotic PCD by: (1) oxidatively damaging numerous cellular organelles, thereby triggering their massive macroautophagic degradation; and (2) oxidatively damaging various cellular proteins, thus impairing cellular proteostasis. Several cellular processes in yeast exposed to POA can protect cells from liponecrosis. They include: (1) POA oxidation in peroxisomes, which reduces the flow of POA into phospholipid synthesis pathways; (2) POA incorporation into neutral lipids, which prevents the excessive accumulation of POA-containing phospholipids in cellular membranes; (3) mitophagy, a selective macroautophagic degradation of dysfunctional mitochondria, which sustains a population of functional mitochondria needed for POA incorporation into neutral lipids; and (4) a degradation of damaged, dysfunctional and aggregated cytosolic proteins, which enables the maintenance of cellular proteostasis.


Subject(s)
Fatty Acids, Monounsaturated/toxicity , Membrane Lipids/metabolism , Necrosis/chemically induced , Necrosis/metabolism , Cell Death/drug effects , Cell Death/physiology , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Necrosis/pathology , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism
15.
Int J Mol Sci ; 15(9): 16522-43, 2014 Sep 18.
Article in English | MEDLINE | ID: mdl-25238416

ABSTRACT

Bile acids are cholesterol-derived bioactive lipids that play essential roles in the maintenance of a heathy lifespan. These amphipathic molecules with detergent-like properties display numerous beneficial effects on various longevity- and healthspan-promoting processes in evolutionarily distant organisms. Recent studies revealed that lithocholic bile acid not only causes a considerable lifespan extension in yeast, but also exhibits a substantial cytotoxic effect in cultured cancer cells derived from different tissues and organisms. The molecular and cellular mechanisms underlying the robust anti-aging and anti-tumor effects of lithocholic acid have emerged. This review summarizes the current knowledge of these mechanisms, outlines the most important unanswered questions and suggests directions for future research.


Subject(s)
Aging/drug effects , Antineoplastic Agents/pharmacology , Lithocholic Acid/pharmacology , Animals , Bile Acids and Salts/physiology , Biological Transport , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/physiology , Cell Line, Tumor , Cellular Senescence/drug effects , Cellular Senescence/physiology , Drug Screening Assays, Antitumor , Homeostasis/drug effects , Hormesis/drug effects , Hormesis/physiology , Humans , Lipid Metabolism , Lithocholic Acid/physiology , Longevity/drug effects , Mice , Mitochondria/drug effects , Mitochondria/physiology , Organelles/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Species Specificity
16.
Microb Cell ; 1(6): 163-178, 2014 May 27.
Article in English | MEDLINE | ID: mdl-28357241

ABSTRACT

A body of evidence supports the view that the signaling pathways governing cellular aging - as well as mechanisms of their modulation by longevity-extending genetic, dietary and pharmacological interventions - are conserved across species. The scope of this review is to critically analyze recent advances in our understanding of cell-autonomous mechanisms of chronological aging in the budding yeast Saccharomyces cerevisiae. Based on our analysis, we propose a concept of a biomolecular network underlying the chronology of cellular aging in yeast. The concept posits that such network progresses through a series of lifespan checkpoints. At each of these checkpoints, the intracellular concentrations of some key intermediates and products of certain metabolic pathways - as well as the rates of coordinated flow of such metabolites within an intricate network of intercompartmental communications - are monitored by some checkpoint-specific "master regulator" proteins. The concept envisions that a synergistic action of these master regulator proteins at certain early-life and late-life checkpoints modulates the rates and efficiencies of progression of such processes as cell metabolism, growth, proliferation, stress resistance, macromolecular homeostasis, survival and death. The concept predicts that, by modulating these vital cellular processes throughout lifespan (i.e., prior to an arrest of cell growth and division, and following such arrest), the checkpoint-specific master regulator proteins orchestrate the development and maintenance of a pro- or anti-aging cellular pattern and, thus, define longevity of chronologically aging yeast.

SELECTION OF CITATIONS
SEARCH DETAIL
...