Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38338713

ABSTRACT

Under specific conditions, some proteins can self-assemble into fibrillar structures called amyloids. Initially, these proteins were associated with neurodegenerative diseases in eucaryotes. Nevertheless, they have now been identified in the three domains of life. In bacteria, they are involved in diverse biological processes and are usually useful for the cell. For this reason, they are classified as "functional amyloids". In this work, we focus our analysis on a bacterial functional amyloid called Hfq. Hfq is a pleiotropic regulator that mediates several aspects of genetic expression, mainly via the use of small noncoding RNAs. Our previous work showed that Hfq amyloid-fibrils interact with membranes. This interaction influences Hfq amyloid structure formation and stability, but the specifics of the lipid on the dynamics of this process is unknown. Here, we show, using spectroscopic methods, how lipids specifically drive and modulate Hfq amyloid assembly or, conversely, its disassembly. The reported effects are discussed in light of the consequences for bacterial cell life.


Subject(s)
Amyloid , RNA, Small Untranslated , Amyloid/metabolism , Amyloidogenic Proteins/metabolism , RNA, Small Untranslated/genetics , Bacteria/metabolism , Lipids , Host Factor 1 Protein/genetics , Host Factor 1 Protein/metabolism , RNA, Bacterial/genetics , Gene Expression Regulation, Bacterial
2.
Methods Mol Biol ; 2741: 399-416, 2024.
Article in English | MEDLINE | ID: mdl-38217665

ABSTRACT

Useful structural information about the conformation of nucleic acids can be quickly acquired by circular and linear dichroism (CD/LD) spectroscopy. These techniques, rely on the differential absorption of polarised light and are indeed extremely sensitive to subtle changes in the structure of chiral biomolecules. Many CD analyses of DNA or DNA:protein complexes have been conducted with substantial data acquisitions. Conversely, CD RNA analysis are still scarce, despite the fact that RNA plays a wide cellular function. This chapter seeks to introduce the reader to the use of circular, linear dichroism and in particular the use of Synchrotron Radiation for such samples. The use of these techniques on small noncoding RNA (sRNA) will be exemplified by analyzing changes in base stacking and/or helical parameters for the understanding of sRNA structure and function, especially by translating the dynamics of RNA:RNA annealing but also to access RNA stability or RNA:RNA alignment. The effect of RNA remodeling proteins will also be addressed. These analyses are especially useful to decipher the mechanisms by which sRNA will adopt the proper conformation thanks to the action of proteins such as Hfq or ProQ in the regulation of the expression of their target mRNAs.


Subject(s)
RNA, Small Untranslated , RNA, Small Untranslated/genetics , Proteins/metabolism , RNA, Messenger/metabolism , DNA , Circular Dichroism , Host Factor 1 Protein
3.
Molecules ; 28(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37959682

ABSTRACT

Microcin E492 (MccE492) is an antimicrobial peptide and proposed virulence factor produced by some Klebsiella pneumoniae strains, which, under certain conditions, form amyloid fibers, leading to the loss of its antibacterial activity. Although this protein has been characterized as a model functional amyloid, the secondary structure transitions behind its formation, and the possible effect of molecules that inhibit this process, have not been investigated. In this study, we examined the ability of the green tea flavonoid epigallocatechin gallate (EGCG) to interfere with MccE492 amyloid formation. Aggregation kinetics followed by thioflavin T binding were used to monitor amyloid formation in the presence or absence of EGCG. Additionally, synchrotron radiation circular dichroism (SRCD) and transmission electron microscopy (TEM) were used to study the secondary structure, thermal stability, and morphology of microcin E492 fibers. Our results showed that EGCG significantly inhibited the formation of the MccE492 amyloid, resulting in mainly amorphous aggregates and small oligomers. However, these aggregates retained part of the ß-sheet SRCD signal and a high resistance to heat denaturation, suggesting that the aggregation process is sequestered or deviated at some stage but not completely prevented. Thus, EGCG is an interesting inhibitor of the amyloid formation of MccE492 and other bacterial amyloids.


Subject(s)
Catechin , Polyphenols , Polyphenols/pharmacology , Tea , Amyloid/chemistry , Amyloidogenic Proteins , Catechin/pharmacology , Catechin/chemistry
4.
Commun Biol ; 6(1): 1075, 2023 10 21.
Article in English | MEDLINE | ID: mdl-37865695

ABSTRACT

Hfq is a pleitropic actor that serves as stress response and virulence factor in the bacterial cell. To execute its multiple functions, Hfq assembles into symmetric torus-shaped hexamers. Extending outward from the hexameric core, Hfq presents a C-terminal region, described as intrinsically disordered in solution. Many aspects of the role and the structure of this region remain unclear. For instance, in its truncated form it can promote amyloid-like filament assembly. Here, we show that a minimal 11-residue motif at the C-terminal end of Hfq assembles into filaments with amyloid characteristics. Our data suggest that the full-length Hfq in its filamentous state contains a similar molecular fingerprint than that of the short ß-strand peptide, and that the Sm-core structure is not affected by filament formation. Hfq proteins might thus co-exist in two forms in vivo, either as isolated, soluble hexamers or as self-assembled hexamers through amyloid-reminiscent interactions, modulating Hfq cellular functions.


Subject(s)
Escherichia coli Proteins , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Amyloid beta-Peptides/metabolism , Protein Binding , Host Factor 1 Protein/genetics , Host Factor 1 Protein/metabolism
5.
Genes (Basel) ; 14(9)2023 08 29.
Article in English | MEDLINE | ID: mdl-37761860

ABSTRACT

Guanine-rich DNA can fold into highly stable four-stranded DNA structures called G-quadruplexes (G4). Originally identified in sequences from telomeres and oncogene promoters, they can alter DNA metabolism. Indeed, G4-forming sequences represent obstacles for the DNA polymerase, with important consequences for cell life as they may lead to genomic instability. To understand their role in bacterial genomic instability, different G-quadruplex-forming repeats were cloned into an Escherichia coli genetic system that reports frameshifts and complete or partial deletions of the repeat when the G-tract comprises either the leading or lagging template strand during replication. These repeats formed stable G-quadruplexes in single-stranded DNA but not naturally supercoiled double-stranded DNA. Nevertheless, transcription promoted G-quadruplex formation in the resulting R-loop for (G3T)4 and (G3T)8 repeats. Depending on genetic background and sequence propensity for structure formation, mutation rates varied by five orders of magnitude. Furthermore, while in vitro approaches have shown that bacterial helicases can resolve G4, it is still unclear whether G4 unwinding is important in vivo. Here, we show that a mutation in recG decreased mutation rates, while deficiencies in the structure-specific helicases DinG and RecQ increased mutation rates. These results suggest that G-quadruplex formation promotes genetic instability in bacteria and that helicases play an important role in controlling this process in vivo.


Subject(s)
Escherichia coli Proteins , G-Quadruplexes , Humans , RecQ Helicases/genetics , RecQ Helicases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , DNA/genetics , Genomic Instability , Escherichia coli Proteins/genetics
6.
Int J Mol Sci ; 24(14)2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37511182

ABSTRACT

The possible carrier role of Outer Membrane Vesicles (OMVs) for small regulatory noncoding RNAs (sRNAs) has recently been demonstrated. Nevertheless, to perform their function, these sRNAs usually need a protein cofactor called Hfq. In this work we show, by using a combination of infrared and circular dichroism spectroscopies, that Hfq, after interacting with the inner membrane, can be translocated into the periplasm, and then be exported in OMVs, with the possibility to be bound to sRNAs. Moreover, we provide evidence that Hfq interacts with and is inserted into OMV membranes, suggesting a role for this protein in the release of sRNA outside the vesicle. These findings provide clues to the mechanism of host-bacteria interactions which may not be defined solely by protein-protein and protein-outer membrane contacts, but also by the exchange of RNAs, and in particular sRNAs.


Subject(s)
Escherichia coli Proteins , RNA, Small Untranslated , Escherichia coli/genetics , Escherichia coli/metabolism , Circular Dichroism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , RNA, Small Untranslated/genetics , Host Factor 1 Protein/genetics , Host Factor 1 Protein/metabolism , RNA, Bacterial/genetics , Gene Expression Regulation, Bacterial
7.
Nucleic Acids Res ; 51(D1): D226-D231, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36280237

ABSTRACT

The Nucleic Acid Circular Dichroism Database (NACDDB) is a public repository that archives and freely distributes circular dichroism (CD) and synchrotron radiation CD (SRCD) spectral data about nucleic acids, and the associated experimental metadata, structural models, and links to literature. NACDDB covers CD data for various nucleic acid molecules, including DNA, RNA, DNA/RNA hybrids, and various nucleic acid derivatives. The entries are linked to primary sequence and experimental structural data, as well as to the literature. Additionally, for all entries, 3D structure models are provided. All entries undergo expert validation and curation procedures to ensure completeness, consistency, and quality of the data included. The NACDDB is open for submission of the CD data for nucleic acids. NACDDB is available at: https://genesilico.pl/nacddb/.


Subject(s)
Databases, Nucleic Acid , Nucleic Acids , Circular Dichroism , Synchrotrons , Nucleic Acids/chemistry
8.
Microorganisms ; 12(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38257880

ABSTRACT

Due to their two-cell membranes, Gram-negative bacteria are particularly resistant to antibiotics. Recent investigations aimed at exploring new target proteins involved in Gram-negative bacteria adaptation helped to identify environmental changes encountered during infection. One of the most promising approaches in finding novel targets for antibacterial drugs consists of blocking noncoding RNA-based regulation using the protein cofactor, Hfq. Although Hfq is important in many bacterial pathogens, its involvement in antibiotics response is still unclear. Indeed, Hfq may mediate drug resistance by regulating the major efflux system in Escherichia coli, but it could also play a role in the influx of antibiotics. Here, using an imaging approach, we addressed this problem quantitatively at the single-cell level. More precisely, we analyzed how Hfq affects the dynamic influx and efflux of ciprofloxacin, an antibiotic from the group of fluoroquinolones that is used to treat bacterial infections. Our results indicated that the absence of either whole Hfq or its C-terminal domain resulted in a more effective accumulation of ciprofloxacin, irrespective of the presence of the functional AcrAB-TolC efflux pump. However, overproduction of the MicF small regulatory RNA, which reduces the efficiency of expression of the ompF gene (coding for a porin involved in antibiotics influx) in a Hfq-dependent manner, resulted in impaired accumulation of ciprofloxacin. These results led us to propose potential mechanisms of action of Hfq in the regulation of fluoroquinolone fluxes across the E. coli envelope.

9.
J Struct Biol ; 214(4): 107912, 2022 12.
Article in English | MEDLINE | ID: mdl-36283630

ABSTRACT

The bacterial chromosomic DNA is packed within a membrane-less structure, the nucleoid, due to the association of DNA with proteins called Nucleoid Associated Proteins (NAPs). Among these NAPs, Hfq is one of the most intriguing as it plays both direct and indirect roles on DNA structure. Indeed, Hfq is best known to mediate post-transcriptional regulation by using small noncoding RNA (sRNA). Although Hfq presence in the nucleoid has been demonstrated for years, its precise role is still unclear. Recently, it has been shown in vitro that Hfq forms amyloid-like structures through its C-terminal region, hence belonging to the bridging family of NAPs. Here, using cryo soft X-ray tomography imaging of native unlabeled cells and using a semi-automatic analysis and segmentation procedure, we show that Hfq significantly remodels the Escherichia coli nucleoid. More specifically, Hfq influences nucleoid density especially during the stationary growth phase when it is more abundant. Our results indicate that Hfq could regulate nucleoid compaction directly via its interaction with DNA, but also at the post-transcriptional level via its interaction with RNAs. Taken together, our findings reveal a new role for this protein in nucleoid remodeling in vivo, that may serve in response to stress conditions and in adapting to changing environments.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Tomography, X-Ray , DNA , Escherichia coli Proteins/genetics , Host Factor 1 Protein/genetics
10.
Int J Mol Sci ; 23(15)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35955871

ABSTRACT

Hfq is a pleiotropic regulator that mediates several aspects of bacterial RNA metabolism. The protein notably regulates translation efficiency and RNA decay in Gram-negative bacteria, usually via its interaction with small regulatory RNAs. Previously, we showed that the Hfq C-terminal region forms an amyloid-like structure and that these fibrils interact with membranes. The immediate consequence of this interaction is a disruption of the membrane, but the effect on Hfq structure was unknown. To investigate details of the mechanism of interaction, the present work uses different in vitro biophysical approaches. We show that the Hfq C-terminal region influences membrane integrity and, conversely, that the membrane specifically affects the amyloid assembly. The reported effect of this bacterial master regulator on membrane integrity is discussed in light of the possible consequence on small regulatory RNA-based regulation.


Subject(s)
Escherichia coli Proteins , RNA, Bacterial , Amyloidogenic Proteins/metabolism , Bacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Host Factor 1 Protein/genetics , Host Factor 1 Protein/metabolism , RNA, Bacterial/metabolism
11.
Methods Mol Biol ; 2538: 75-93, 2022.
Article in English | MEDLINE | ID: mdl-35951294

ABSTRACT

Small-angle scattering is a powerful technique to obtain structural information on biomacromolecules in aqueous solution at the sub-nanometer and nanometer length scales. It provides the sizes and overall shapes of the scattering particles. While small-angle X-ray scattering (SAXS) has often been used for structural analysis of a single-component system, small-angle neutron scattering (SANS) has been used to reveal the internal organization of a multicomponent system such as protein-protein and protein-DNA complexes. This is due to the fact that the neutron scattering length is largely different between hydrogen and deuterium, and thus it allows to make a specific component in complexes "invisible" to neutrons by changing the H2O/D2O ratio in the solvent with or without molecular deuteration. In this chapter, we describe a method to characterize the biomolecular structures using SANS and SAXS, in particular, focusing on fibrillar proteins such as bacterial amyloids and their complexes with nucleic acids.


Subject(s)
Neutron Diffraction , Neutrons , Amyloidogenic Proteins , DNA , Neutron Diffraction/methods , Scattering, Small Angle , X-Ray Diffraction , X-Rays
12.
Methods Mol Biol ; 2538: 145-163, 2022.
Article in English | MEDLINE | ID: mdl-35951299

ABSTRACT

Amyloid inhibitors, such as the green tea compound epigallocatechin gallate EGCG, apomorphine or curlicide, have antibacterial properties. Conversely, antibiotics such as tetracycline derivatives or rifampicin also affect eukaryotic amyloids formation and may be used to treat neurodegenerative diseases. This opens the possibility for existing drugs to be repurposed in view of new therapy, targeting amyloid-like proteins from eukaryotes to prokaryotes and conversely. Here we present how to evaluate the effect of these amyloid-forming inhibitors on bacterial amyloid self-assemblies in vitro and on bacterial survival. The different approaches possible are presented.


Subject(s)
Amyloidosis , Catechin , Amyloid/metabolism , Amyloidogenic Proteins , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria/metabolism , Catechin/pharmacology , Humans
13.
Methods Mol Biol ; 2538: 217-234, 2022.
Article in English | MEDLINE | ID: mdl-35951303

ABSTRACT

Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD), and orientated circular dichroism (OCD) are complementary spectroscopies widely used for the analysis of protein samples such as the amyloids commonly renowned as neurodegenerative agents. Determining the secondary structure content of proteins, such as aggregated ß-sheets inside the amyloids and in various environments, including membranes and lipids, has made these techniques very valuable and complemental to high-resolution techniques such as nuclear magnetic resonance (NMR), X-ray crystallography, and cryo-electron microscopy. FTIR and CD are extremely sensitive to structural changes of proteins due to environmental changes. Furthermore, FTIR provides information on lipid modifications upon protein binding, whereas synchrotron radiation CD (SRCD) and OCD are sensitive to the subtle structural changes occurring in ß-sheet-rich proteins and their orientation or alignment with lipid bilayers. FTIR and CD techniques allow the identification of parallel and antiparallel ß-sheet content and are therefore complementary. In this chapter, we present FTIR and CD/OCD applications to study the interactions of bacterial amyloids with membranes and lipids. Moreover, we show how to decipher the spectroscopic signals to obtain information on the molecular structure of amyloids and their interaction with lipids, addressing potential amyloid insertion into membranes and the lipid bilayer adjustments observed.


Subject(s)
Amyloid , Amyloidogenic Proteins , Amyloid/chemistry , Circular Dichroism , Cryoelectron Microscopy , Lipid Bilayers/chemistry , Protein Structure, Secondary , Spectroscopy, Fourier Transform Infrared/methods
14.
Methods Mol Biol ; 2538: 235-260, 2022.
Article in English | MEDLINE | ID: mdl-35951304

ABSTRACT

The expression and conformation of bacterial proteins and peptides can be monitored in situ by Fourier transform infrared spectroscopy (FTIR), provided that the concentration of the protein of interest is sufficient. Here, we describe a simple protocol to analyze the conformation adopted by a specific amyloid protein in Escherichia coli cells, the pleiotropic regulator Hfq.E. coli cells expressing Hfq under an inducible promoter are analyzed. The change in protein conformation is analyzed by comparing the different populations versus controls (i.e., Δhfq cells, totally devoid of the Hfq protein) by difference spectroscopy, second derivation, curve-fitting, and principal component analysis. All the analyses were performed in the free, open-source software Quasar. We describe the detailed protocol for analyzing the data in Quasar. We show that the specific absorption of the ß-amyloid conformation can be easily detected in the WT-Hfq, with bands at 1624 cm-1 and 1693 cm-1 indicating the presence of both parallel and antiparallel ß-sheets. Furthermore, we show that FTIR spectroscopy is sensitive enough to probe the conformation of an amyloid protein backbone in vivo and to analyze its conformation in situ, directly in bacterial cells, without the need for protein purification.


Subject(s)
Amyloid beta-Peptides , Escherichia coli , Amyloidogenic Proteins , Escherichia coli/genetics , Protein Conformation , Spectroscopy, Fourier Transform Infrared/methods
15.
Methods Mol Biol ; 2538: 305-317, 2022.
Article in English | MEDLINE | ID: mdl-35951308

ABSTRACT

Nanofluidics is an emerging methodology to investigate single biomacromolecules without functionalization and/or attachment of the molecules to a substrate. In conjunction with fluorescence microscopy, it can be used to investigate structural and dynamical aspects of amyloid-DNA interaction. Here, we summarize the methodology for fabricating lab-on-chip devices in relatively cheap polymer resins and featuring quasi one-dimensional nanochannels with a cross-sectional diameter of tens to a few hundred nanometers. Site-specific staining of amyloid-forming protein Hfq with a fluorescence dye is also described. The methodology is illustrated with two application studies. The first study involves assembling bacterial amyloid proteins such as Hfq on double-stranded DNA and monitoring the folding and compaction of DNA in a condensed state. The second study is about the concerted motion of Hfq on DNA and how this is related to DNA's internal motion. Explicit details of procedures and workflows are given throughout.


Subject(s)
Amyloidogenic Proteins , DNA , Bacterial Proteins , DNA/chemistry , DNA Probes , DNA-Binding Proteins
16.
Methods Mol Biol ; 2538: 319-333, 2022.
Article in English | MEDLINE | ID: mdl-35951309

ABSTRACT

Bacterial chromosomal DNA is packed within a non-membranous structure, the nucleoid, thanks to nucleoid associated proteins (NAPs). The role of bacterial amyloid has recently emerged among these NAPs, particularly with the nucleoid-associated protein Hfq that plays a direct role in DNA compaction. In this chapter, we present a 3D imaging technique, cryo-soft X-ray tomography (cryo-SXT) to obtain a detailed 3D visualization of subcellular bacterial structures, especially the nucleoid. Cryo-SXT imaging of native unlabeled cells enables observation of the nucleoid in 3D with a high resolution, allowing to evidence in vivo the role of amyloids on DNA compaction. The precise experimental methods to obtain 3D tomograms will be presented.


Subject(s)
Organelles , Tomography, X-Ray , Amyloidogenic Proteins , Bacterial Proteins , DNA , DNA, Bacterial , Imaging, Three-Dimensional/methods , Organelles/ultrastructure , Tomography, X-Ray/methods
17.
J Phys Chem B ; 126(7): 1477-1482, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35166115

ABSTRACT

The mobility of protein is fundamental in the machinery of life. Here, we have investigated the effect of DNA binding in conjunction with DNA segmental fluctuation (internal motion) of the bacterial Hfq master regulator devoid of its amyloid C-terminus domain. Hfq is one of the most abundant nucleoid associated proteins that shape the bacterial chromosome and is involved in several aspects of nucleic acid metabolism. Fluorescence microscopy has been used to track a C-terminus domain lacking mutant form of Hfq on double-stranded DNA, which is stretched by confinement to a rectangular nanofluidic channel. The mobility of the mutant is strongly accelerated with respect to the wild-type variant. Furthermore, it shows a reverse dependence on the internal motion of DNA, in that slower motion results in slower protein diffusion. The results demonstrate the subtle role of DNA internal motion in controlling the mobility of a nucleoid associated protein, and, in particular, the importance of transient binding and moving DNA strands out of the way.


Subject(s)
Escherichia coli Proteins , Host Factor 1 Protein , Bacterial Proteins/metabolism , DNA/chemistry , DNA-Binding Proteins/chemistry , Diffusion , Escherichia coli Proteins/chemistry , Host Factor 1 Protein/chemistry , Host Factor 1 Protein/genetics , Host Factor 1 Protein/metabolism , Protein Binding
18.
QRB Discov ; 3: e15, 2022.
Article in English | MEDLINE | ID: mdl-37529279

ABSTRACT

Interactions between proteins and single-stranded DNA (ssDNA) are crucial for many fundamental biological processes, including DNA replication and genetic recombination. Thus, understanding detailed mechanisms of these interactions is necessary to uncover regulatory rules occurring in all living cells. The RNA-binding Hfq is a pleiotropic bacterial regulator that mediates many aspects of nucleic acid metabolism. The protein notably mediates mRNA stability and translation efficiency by using stress-related small regulatory RNA as cofactors. In addition, Hfq helps to compact double-stranded DNA. In this paper, we focused on the action of Hfq on ssDNA. A combination of experimental methodologies, including spectroscopy and molecular imaging, has been used to probe the interactions of Hfq and its amyloid C-terminal region with ssDNA. Our analysis revealed that Hfq binds to ssDNA. Moreover, we demonstrate for the first time that Hfq drastically changes the structure and helical parameters of ssDNA, mainly due to its C-terminal amyloid-like domain. The formation of the nucleoprotein complexes between Hfq and ssDNA unveils important implications for DNA replication and recombination.

19.
Biology (Basel) ; 10(9)2021 Sep 12.
Article in English | MEDLINE | ID: mdl-34571778

ABSTRACT

Hfq is a bacterial RNA chaperone which promotes the pairing of small noncoding RNAs to target mRNAs, allowing post-transcriptional regulation. This RNA annealing activity has been attributed for years to the N-terminal region of the protein that forms a toroidal structure with a typical Sm-fold. Nevertheless, many Hfqs, including that of Escherichia coli, have a C-terminal region with unclear functions. Here we use a biophysical approach, Synchrotron Radiation Circular Dichroism (SRCD), to probe the interaction of the E. coli Hfq C-terminal amyloid region with RNA and its effect on RNA annealing. This C-terminal region of Hfq, which has been described to be dispensable for sRNA:mRNA annealing, has an unexpected and significant effect on this activity. The functional consequences of this novel property of the amyloid region of Hfq in relation to physiological stress are discussed.

20.
Antibiotics (Basel) ; 10(3)2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33806663

ABSTRACT

Hfq is a bacterial regulator with key roles in gene expression. The protein notably regulates translation efficiency and RNA decay in Gram-negative bacteria, thanks to its binding to small regulatory noncoding RNAs. This property is of primary importance for bacterial adaptation and survival in hosts. Small RNAs and Hfq are, for instance, involved in the response to antibiotics. Previous work has shown that the E. coli Hfq C-terminal region (Hfq-CTR) self-assembles into an amyloid structure. It was also demonstrated that the green tea compound EpiGallo Catechin Gallate (EGCG) binds to Hfq-CTR amyloid fibrils and remodels them into nonamyloid structures. Thus, compounds that target the amyloid region of Hfq may be used as antibacterial agents. Here, we show that another compound that inhibits amyloid formation, apomorphine, may also serve as a new antibacterial. Our results provide an alternative in order to repurpose apomorphine, commonly used in the treatment of Parkinson's disease, as an antibiotic to block bacterial adaptation to treat infections.

SELECTION OF CITATIONS
SEARCH DETAIL
...