Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Microbiome ; 19(1): 23, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637894

ABSTRACT

BACKGROUND: The processes that shape microbial biogeography are not well understood, and concepts that apply to macroorganisms, like dispersal barriers, may not affect microorganisms in the same predictable ways. To better understand how known macro-scale biogeographic processes can be applied at micro-scales, we examined seagrass associated microbiota on either side of Wallace's line to determine the influence of this cryptic dispersal boundary on the community structure of microorganisms. Communities were examined from twelve locations throughout Indonesia on either side of this theoretical line. RESULTS: We found significant differences in microbial community structure on either side of this boundary (R2 = 0.09; P = 0.001), and identified seven microbial genera as differentially abundant on either side of the line, six of these were more abundant in the West, with the other more strongly associated with the East. Genera found to be differentially abundant had significantly smaller minimum cell dimensions (GLM: t923 = 59.50, P < 0.001) than the overall community. CONCLUSION: Despite the assumed excellent dispersal ability of microbes, we were able to detect significant differences in community structure on either side of this cryptic biogeographic boundary. Samples from the two closest islands on opposite sides of the line, Bali and Komodo, were more different from each other than either was to its most distant island on the same side. We suggest that limited dispersal across this barrier coupled with habitat differences are primarily responsible for the patterns observed. The cryptic processes that drive macroorganism community divergence across this region may also play a role in the bigeographic patterns of microbiota.

2.
C R Biol ; 339(9-10): 417-26, 2016.
Article in English | MEDLINE | ID: mdl-27543138

ABSTRACT

Previous investigations have uncovered divergent mitochondrial clades within the blue-spotted maskray, previously Neotrygon kuhlii (Müller and Henle). The hypothesis that the blue-spotted maskray may consist of a complex of multiple cryptic species has been proposed, and four species have been recently described or resurrected. To test the multiple cryptic species hypothesis, we investigated the phylogenetic relationships and coalescence patterns of mitochondrial sequences in a sample of 127 new individuals from the Indian Ocean and the Coral Triangle region, sequenced at both the CO1 and cytochrome b loci. The maximum-likelihood (ML) tree of concatenated CO1+cytochrome b gene sequences, rooted by the New Caledonian maskray N. trigonoides, yielded 9 strongly supported, main clades. Puillandre's ABGD algorithm detected gaps in nucleotide distance consistent with the ML phylogeny. The general mixed Yule-coalescent algorithm partitioned the dataset into putative species generally consistent with the ML phylogeny. Nuclear markers generally confirmed that distinct mitochondrial clades correspond to genetically isolated lineages. The nine main lineages identified by ML analysis were geographically distributed in a parapatric fashion, indicating reproductive isolation. The hypothesis of multiple cryptic species is thus validated.


Subject(s)
Skates, Fish/genetics , Algorithms , Animals , Base Sequence , Cytochromes b/genetics , Cytochromes c/genetics , DNA/genetics , Furans , Genetic Markers/genetics , Indian Ocean , Mitochondria/genetics , Pentanoic Acids , Phylogeny , Skates, Fish/classification , Species Specificity
3.
C R Biol ; 336(4): 221-32, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23849725

ABSTRACT

The maskray from New Caledonia, Neotrygon trigonoides Castelnau, 1873, has been recently synonymized with the blue-spotted maskray, N. kuhlii (Müller and Henle, 1841), a species with wide Indo-West Pacific distribution, but the reasons for this are unclear. Blue-spotted maskray specimens were collected from the Indian Ocean (Tanzania, Sumatra) and the Coral Triangle (Indonesia, Taiwan, and West Papua), and N. trigonoides specimens were collected from New Caledonia (Coral-Sea). Their partial COI gene sequences were generated to expand the available DNA-barcode database on this species, which currently comprises homologous sequences from Ningaloo Reef, the Coral Triangle and the Great Barrier Reef (Coral-Sea). Spotting patterns were also compared across regions. Haplotypes from the Coral-Sea formed a haplogroup phylogenetically distinct from all other haplotypes sampled in the Indo-West Pacific. No clear-cut geographic composition relative to DNA-barcodes or spotting patterns was apparent in N. kuhlii samples across the Indian Ocean and the Coral Triangle. The New Caledonian maskray had spotting patterns markedly different from all the other samples. This, added to a substantial level of net nucleotide divergence (2.6%) with typical N. kuhlii justifies considering the New Caledonian maskray as a separate species, for which we propose to resurrect the name Neotrygon trigonoides.


Subject(s)
Skates, Fish/physiology , Animals , Base Sequence , Color , Coral Reefs , DNA/genetics , Indian Ocean , New Caledonia , Pacific Ocean , Phylogeny , Polymerase Chain Reaction , Skates, Fish/anatomy & histology , Skates, Fish/classification , Terminology as Topic
4.
J Hered ; 104(5): 725-33, 2013.
Article in English | MEDLINE | ID: mdl-23863701

ABSTRACT

Phylogeographic structure was investigated in the blue-spotted maskray, Neotrygon kuhlii, focusing on the Coral Triangle region. We used as genetic marker a 519-bp fragment of the cytochrome c-oxidase subunit I (COI) gene, sequenced in a total of 147 individuals from 26 sampling locations. The parsimony network of COI haplotypes was split into seven distinct clades within the Coral Triangle region. Different clades had exclusive but contiguous geographic distributions, indicating parapatric-like phylogeographic structure. Strong genetic differences were also inferred between local populations within a clade, where reciprocal monophyly between geographically adjacent samples was observed on several instances. Nearly 25% of the total molecular variance could be ascribed to differences between geographic samples within a clade, whereas interclade variation accounted for >65% of the total variance. The strong phylogeographic structure observed within a clade can be explained by either sedentarity or female philopatry. We interpret the parapatric distribution of clades as the joint result of 1) expansion from refuge populations at times of low sea level, and 2) possible enhanced competition between individuals from different clades, or assortative mating, or hybrid zones, along lines of secondary contact. The parapatric-like structure uncovered in the present study parallels regional differences at nuclear marker loci, thus pointing to incipient speciation within Coral Triangle N. kuhlii.


Subject(s)
Elasmobranchii/genetics , Electron Transport Complex IV/genetics , Mitochondria/genetics , Animals , Base Sequence , Genetic Markers/genetics , Genetic Variation , Genetics, Population , Haplotypes/genetics , Indonesia , Molecular Sequence Data , Phylogeography , Sequence Analysis, DNA
5.
C R Biol ; 336(2): 82-92, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23608177

ABSTRACT

It has been previously established that the Leopard Whipray, Himantura leoparda, consists of two genetically isolated, cryptic species, provisionally designated as 'Cluster 1' and 'Cluster 4' (Arlyza et al., Mol. Phylogenet. Evol. 65 (2013) [1]). Here, we show that the two cryptic species differ by the spotting patterns on the dorsal surface of adults: Cluster-4 individuals tend to have larger-ocellated spots, which also more often have a continuous contour than Cluster-1 individuals. We show that H. leoparda's holotype has the typical larger-ocellated spot pattern, designating Cluster 4 as the actual H. leoparda. The other species (Cluster 1) is described as Himantura tutul sp. nov. on the basis of the nucleotide sequence of a 655-base pair fragment of its cytochrome-oxidase I gene (GenBank accession No. JX263335). Nucleotide synapomorphies at this locus clearly distinguish H. tutul sp. nov. from all three other valid species in the H. uarnak species complex, namely H. leoparda, H. uarnak, and H. undulata. H. tutul sp. nov. has a wide distribution in the Indo-West Pacific, from the shores of eastern Africa to the Indo-Malay archipelago. H. leoparda under its new definition has a similarly wide Indo-West Pacific distribution.


Subject(s)
Electron Transport Complex IV/genetics , Skates, Fish/classification , Skates, Fish/genetics , Africa, Eastern , Animals , Base Sequence , DNA/chemistry , DNA/genetics , Female , Geography , Indian Ocean , Indonesia , Pacific Ocean , Phylogeny , Real-Time Polymerase Chain Reaction , Skin/anatomy & histology , Species Specificity , Terminology as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...