Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Diab Vasc Dis Res ; 18(6): 14791641211062050, 2021.
Article in English | MEDLINE | ID: mdl-34903064

ABSTRACT

BACKGROUND: Autophagy is a catabolic mechanism that involves lysosomal-dependent degradation of unnecessary intracellular components and responsible for normal cellular homeostasis. Autophagy pathway and its key participant ATG5/LC3 are associated with several pathologies such as diabetes mellitus and its complications. METHODS: Levels and expression of autophagy key components ATG5 and LC3B were analyzed in both human model and murine tissues. One hundred and twenty human subjects were divided into four groups: Healthy (control), diabetes mellitus without complications, diabetic nephropathy, and diabetic retinopathy. Additionally, we used kidneys from WT healthy and diabetic nephropathy mice. Lysate derived from human peripheral blood mononuclear cells and murine renal cortex lysates were subjected to western blot and immunohistochemical analysis. RESULTS: Western blot and immunohistochemical analysis demonstrate that ATG5 protein levels were significantly decreased in diabetes mellitus, diabetic nephropathy (DN), and diabetic retinopathy patients versus healthy controls and in DN mice compared to healthy mice (0.65 ± 0.04; 1.15 ± 0.13 A.U. units, respectively). Quantification of staining area (%) of ATG5 mice tissue expression also decreased in DN versus healthy mice (4.42 ± 1.08%; 10.87 ± 1.01%, respectively). LC3B LEVELS AND EXPRESSION: Significant reduction in peripheral blood mononuclear cells in diabetic patients (with or without complications) vs. healthy controls. Renal LC3B levels were lower in DN versus healthy mice (0.36 ± 0.03; 0.68 ± 0.07 A.U. units). Renal LC3B staining quantification revealed significant reduction in DN versus healthy mice (1.7 ± 0.23%; 8.56 ± 1.7%). CONCLUSION: We conclude that ATG5, as well as LC3B, are down regulated in diabetic patients with or without complications. This diminution contributes to deficiencies in the autophagy process.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Animals , Autophagy , Autophagy-Related Protein 5/genetics , Diabetic Nephropathies/genetics , Gene Expression , Humans , Leukocytes, Mononuclear , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...