Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Direct ; 7(12): e549, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38054113

ABSTRACT

The mesophyll cells of grass leaves, such as rice, are traditionally viewed as displaying a relatively uniform pattern, in contrast to the clear distinctions of palisade and spongy layers in typical eudicot leaves. This quantitative analysis of mesophyll cell size and shape in rice leaves reveals that there is an inherent pattern in which cells in the middle layer of the mesophyll are larger and less circular and have a distinct orientation of their long axis compared to mesophyll cells in other layers. Moreover, this pattern was observed in a range of rice cultivars and species. The significance of this pattern with relation to potential photosynthetic function and the implication of the widespread use of middle layer mesophyll cells as typical of the rice leaf have been investigated and discussed.

2.
Curr Biol ; 33(13): 2814-2822.e4, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37327783

ABSTRACT

Stomata are controllable micropores formed between two adjacent guard cells (GCs) that regulate gas flow across the plant surface.1 Grasses, among the most successful organisms on the planet and the main food crops for humanity, have GCs flanked by specialized lateral subsidiary cells (SCs).2,3,4 SCs improve performance by acting as a local pool of ions and metabolites to drive changes in turgor pressure within the GCs that open/close the stomatal pore.4,5,6,7,8 The 4-celled complex also involves distinctive changes in geometry, having dumbbell-shaped GCs compared with typical kidney-shaped stomata.2,4,9 However, the degree to which this distinctive geometry contributes to improved stomatal performance, and the underlying mechanism, remains unclear. To address this question, we created a finite element method (FEM) model of a grass stomatal complex that successfully captures experimentally observed pore opening/closure. Exploration of the model, including in silico and experimental mutant analyses, supports the importance of a reciprocal pressure system between GCs and SCs for effective stomatal function, with SCs functioning as springs to restrain lateral GC movement. Our results show that SCs are not essential but lead to a more responsive system. In addition, we show that GC wall anisotropy is not required for grass stomatal function (in contrast to kidney-shaped GCs10) but that a relatively thick GC rod region is needed to enhance pore opening. Our results demonstrate that a specific cellular geometry and associated mechanical properties are required for the effective functioning of grass stomata.


Subject(s)
Plant Stomata , Poaceae , Poaceae/physiology , Plant Stomata/physiology , Plants
SELECTION OF CITATIONS
SEARCH DETAIL
...