Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sci Total Environ ; 712: 134483, 2020 Apr 10.
Article in English | MEDLINE | ID: mdl-31822420

ABSTRACT

Approximately half of the area in the Spanish Central Pyrenees is dedicated to pastures. A decrease in stocking rate coupled with changes in livestock management in recent decades have favoured the expansion of Nardus grasslands, which are considered undesirable for grazing use and for diversity conservation. The objective of this study was to analyse how topsoil properties are related to grassland plant composition occurring in erosion-disturbed (chalk grasslands) and undisturbed (Nardus mat-grasslands) soils in a subalpine area of the Spanish Central Pyrenees. We selected six paired sampling points for a side-by-side comparison of both communities. At each point, we 1) estimated the plant cover of each species through inventories and 2) analysed a set of physical-chemical topsoil properties (0-5 and 5-10 cm depth). Data were analysed through multivariate analysis. We found typical species of Nardus mat-grasslands in the undisturbed sites growing on non-eroded and well-structured soils that were low in calcium and acidic, with high contents of organic matter. In turn, we found earlier-successional grassland communities growing on slopes recently affected by soil erosion processes. The species composition was mainly species from stony slope grasslands and, to a lesser extent, from the long-term snow-covered environments of the high mountains. These soils were shallower and stonier and had a less-stable structure, higher pH, and lower organic matter and calcium content than undisturbed soils. Our results suggest that the differences between both communities emerge and are maintained by soil-plant feedback mechanisms mediated in Nardus mat-grasslands through soil stabilization and acidification and in chalk grasslands through soil erosion and basification. These findings suggest that the subalpine grassland mosaic results from a model of non-equilibrium plant coexistence due to soil disturbance and inexorable succession. Management should be focused on maintaining a disturbance regime, through grazing, sufficient to prevent the spreading of Nardus mat-grasslands.


Subject(s)
Grassland , Poaceae , Soil , Soil Microbiology
2.
Sci Total Environ ; 618: 1079-1087, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29122341

ABSTRACT

Prescribed burning has been readopted in the last decade in the Central Pyrenees to stop the regression of subalpine grasslands in favour of shrublands, dominated among others by Echinospartum horridum (Vahl) Rothm. Nevertheless, the effect of this practice on soil properties is uncertain. The aim of this work was to analyse the effects of these burnings on topsoil organic matter and biological properties. Soil sampling was carried out in an autumnal prescribed fire in Buisán (NE-Spain, November 2015). Topsoil was sampled at 0-1cm, 1-2cm and 2-3cm depth in triplicate just before (U), ~1h (B0), 6months (B6) and 12months (B12) after burning. We analysed soil total organic C (TOC), total nitrogen (TN), microbial biomass C (Cmic), soil respiration (SR) and ß-D-glucosidase activity. A maximum temperature of 438°C was recorded at soil surface while at 1cm depth only 31°C were reached. Burning significantly decreased TOC (-52%), TN (-44%), Cmic (-57%), SR (-72%) and ß-D-glucosidase (-66%) at 0-1cm depth while SR was also reduced (-45%) at 1-2cm depth. In B6 and B12, no significant changes in these properties were observed as compared to B0. It can be concluded that the impact of prescribed burning has been significant and sustained over time, although limited to the first two topsoil centimetres.

SELECTION OF CITATIONS
SEARCH DETAIL
...