Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Nat Prod ; 85(4): 1039-1051, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35416664

ABSTRACT

The bacterial genus Tenacibaculum has been associated with various ecological roles in marine environments. Members of this genus can act, for example, as pathogens, predators, or episymbionts. However, natural products produced by these bacteria are still unknown. In the present work, we investigated a Tenacibaculum strain for the production of antimicrobial metabolites. Six new phenethylamine (PEA)-containing alkaloids, discolins A and B (1 and 2), dispyridine (3), dispyrrolopyridine A and B (4 and 5), and dispyrrole (6), were isolated from media produced by the predatory bacterium Tenacibaculum discolor sv11. Chemical structures were elucidated by analysis of spectroscopic data. Alkaloids 4 and 5 exhibited strong activity against Gram-positive Bacillus subtilis DSM10, Mycobacterium smegmatis ATCC607, Listeria monocytogenes DSM20600, and Staphylococcus aureus ATCC25923, with minimum inhibitory concentration (MIC) values ranging from 0.5 to 4 µg/mL, and moderate activity against Candida albicans FH2173 and Aspergillus flavus ATCC9170. Compound 6 displayed moderate antibacterial activities against Gram-positive bacteria. Dispyrrolopyridine A (4) was active against efflux pump deficient Escherichia coli ATCC25922 ΔtolC, with an MIC value of 8 µg/mL, as well as against Caenorhabditis elegans N2 with an MIC value of 32 µg/mL. Other compounds were inactive against these microorganisms. The biosynthetic route toward discolins A and B (1 and 2) was investigated using in vivo and in vitro experiments. It comprises an enzymatic decarboxylation of phenylalanine to PEA catalyzed by DisA, followed by a nonenzymatic condensation to form the central imidazolium ring. This spontaneous formation of the imidazolium core was verified by means of a synthetic one-pot reaction using the respective building blocks. Six additional strains belonging to three Tenacibaculum species were able to produce discolins, and several DisA analogues were identified in various marine flavobacterial genera, suggesting the widespread presence of PEA-derived compounds in marine ecosystems.


Subject(s)
Alkaloids , Anti-Infective Agents , Tenacibaculum , Alkaloids/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology , Ecosystem , Escherichia coli , Flavobacterium , Microbial Sensitivity Tests , Phenethylamines
2.
ACS Chem Biol ; 14(2): 176-181, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30649848

ABSTRACT

Bacterial aminophenylpyrrole-derived alkaloids (APPAs) represent high value lead compounds. Pyrrolnitrin, which was developed into globally important fungicides, is the only reported APPA produced by Proteobacteria. Recently, various APPAs showing diverse bioactivities were discovered from Bacteroidetes. Here, a bioinformatics and phylogenetic approach enabled the elucidation of the biosynthesis of the highly diverse APPAs in Cytophagales bacteria and their chemical diversification strategy. The biosynthetic gene clusters were identified in producer strains, and the biosynthesis was experimentally validated by heterologous expression experiments in E. coli. First, one enzyme-dependent biosynthetic step yields the tryptophan-derived precursor 3-(2'-aminophenyl)-pyrrole. Second, a spontaneous Pictet-Spengler-like coupling reaction enables the bacterial producer strains to create a library of tricyclic alkaloids, since several aldehydes can be applied as substrates. The diversity of this natural products class is further enlarged by the catalytic action of a methyltransferase, which adds one or more methyl groups to the aminophenyl intermediate.


Subject(s)
Alkaloids/biosynthesis , Alkaloids/chemistry , Pyrroles/chemistry , Bacteria/metabolism , Molecular Structure
3.
Mar Drugs ; 15(10)2017 Oct 12.
Article in English | MEDLINE | ID: mdl-29023396

ABSTRACT

The microbiome of three different sites at the Peruvian Pacific coast was analyzed, revealing a lower bacterial biodiversity at Isla Foca than at Paracas and Manglares, with 89 bacterial genera identified, as compared to 195 and 173 genera, respectively. Only 47 of the bacterial genera identified were common to all three sites. In order to obtain promising strains for the putative production of novel antimicrobials, predatory bacteria were isolated from these sampling sites, using two different bait organisms. Even though the proportion of predatory bacteria was only around 0.5% in the here investigated environmental microbiomes, by this approach in total 138 bacterial strains were isolated as axenic culture. 25% of strains showed antibacterial activity, thereby nine revealed activity against clinically relevant methicillin resistant Staphylococcus aureus (MRSA) and three against enterohemorrhagic Escherichia coli (EHEC) strains. Phylogeny and physiological characteristics of the active strains were investigated. First insights into the chemical basis of the antibacterial activity indicated the biosynthetic production of the known compounds ariakemicin, kocurin, naphthyridinomycin, pumilacidins, resistomycin, and surfactin. However, most compounds remained elusive until now. Hence, the obtained results implicate that the microbiome present at the various habitats at the Peruvian coastline is a promising source for heterotrophic bacterial strains showing high potential for the biotechnological production of antibiotics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/metabolism , Biological Products/pharmacology , Anti-Bacterial Agents/isolation & purification , Bacteria/classification , Bacteria/isolation & purification , Biodiversity , Biological Products/isolation & purification , Biotechnology , Enterohemorrhagic Escherichia coli/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Microbiota , Peru , Phylogeny
4.
Microbiology (Reading) ; 163(10): 1409-1414, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28942758

ABSTRACT

The antibiotically bioactive thiopeptide compound kocurin was identified in extracts from a newly isolated Kocuria rosea strain. The axenic strain was retrieved from a soil sample of the intertidal area at the Paracas National Park, Peru. The genetic basis of this promising natural product with activity against methicillin-resistant Staphylococcus aureus (MRSA) strains was revealed by comparative genome analysis of this new isolate and other reported thiopeptide producer strains. The functionality of the predicted gene locus was experimentally proven by heterologous expression in Streptomyces coelicolor M1146. Expression of the gene cluster under the control of a constitutive promoter enabled the transgenic strain to produce kocurin in selected media. The kocurin biosynthetic gene cluster comprises nine open reading frames and spans around 12 kbp of the genome.

SELECTION OF CITATIONS
SEARCH DETAIL
...