Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 7(13): 5737-43, 2015 Mar 19.
Article in English | MEDLINE | ID: mdl-25743612

ABSTRACT

The self-assembly of uniform nanocrystals into large porous architectures is currently of immense interest for nanochemistry and nanotechnology. These materials combine the respective advantages of discrete nanoparticles and mesoporous structures. In this article, we demonstrate a facile nanoparticle templating process to synthesize a three-dimensional mesoporous BiFeO3 material. This approach involves the polymer-assisted aggregating assembly of 3-aminopropanoic acid-stabilized bismuth ferrite (BiFeO3) nanocrystals followed by thermal decomposition of the surfactant. The resulting material consists of a network of tightly connected BiFeO3 nanoparticles (∼6-7 nm in diameter) and has a moderately high surface area (62 m(2) g(-1)) and uniform pores (ca. 6.3 nm). As a result of the unique mesostructure, the porous assemblies of BiFeO3 nanoparticles show an excellent catalytic activity and chemical stability for the reduction of p-nitrophenol to p-aminophenol with NaBH4.

2.
Nanoscale ; 6(15): 8694-703, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-24948441

ABSTRACT

Porous multicomponent semiconductor materials show improved photocatalytic performance due to the large and accessible pore surface area and high charge separation efficiency. Here we report the synthesis of well-ordered porous polyoxometalate (POM)-Ag2S-CdS hybrid mesostructures featuring a controllable composition and high photocatalytic activity via a two-step hard-templating and topotactic ion-exchange chemical process. Ag2S compounds and polyoxometalate cluster anions with different reduction potentials, such as PW12O40(3-), SiW12O40(4-) and PMo12O40(3-), were employed as electron acceptors in these ternary heterojunction photocatalysts. Characterization by small-angle X-ray scattering, X-ray diffraction, transmission electron microscopy and N2 physisorption measurements showed hexagonal arrays of POM-Ag2S-CdS hybrid nanorods with large internal BET surface areas and uniform mesopores. The Keggin structure of the incorporated POM clusters was also verified by elemental X-ray spectroscopy microanalysis, infrared and diffuse-reflectance ultraviolet-visible spectroscopy. These new porous materials were implemented as visible-light-driven photocatalysts, displaying exceptional high activity in aerobic oxidation of various para-substituted benzyl alcohols to the corresponding carbonyl compounds. Our experiments show that the spatial separation of photogenerated electrons and holes at CdS through the potential gradient along the CdS-Ag2S-POM interfaces is responsible for the increased photocatalytic activity.

3.
Langmuir ; 22(12): 5350-7, 2006 Jun 06.
Article in English | MEDLINE | ID: mdl-16732663

ABSTRACT

In this work, we compare the surface and morphometric properties of the pore networks in four silicas (code names Fr1428, Fr474, Fr1386, and MM1164) with different random porosities using the adsorption isotherms of two different probe adsorbents, nitrogen and methanol. The parent material Fr1428 was a pure silica 25 microm sample. The Fr474 sample was the same one with bonded electroneutral diol groups on its outer surface. Fr1386 was the parent material with bonded electroneutral diol groups on its outer surface and sulfonic groups on its inner surface, and the MM1164 sample was the original sample with external electroneutral diol groups and internal n-octadecyl groups. The properties examined were the specific surface area S(p) and the specific pore volume V(p), the pore connectivity c, the pore anisotropy b, the tortuosity tau, and the lacunarity lambda of the pore network as well as the percentage microporosity. These properties provide a complete characterization of complexity of the porous network. The surface areas of the solids were estimated via the traditional BET plots (S(BET)) and the I-point method (S(I)). The two sets of values S(BET) and S(I) were practically identical and they decrease as the size of the functional group increases. The values of percentage microporosity were also determined by the same I-point method using the variation of the C parameter of the BET equation. The total pore volume V(p) was found to be higher in the case of methanol adsorption, compared to nitrogen, which might be related to increase condensation. The networks of the pores were simulated using a dual site bond model (DSBM) and Monte Carlo (MC) techniques for achieving their proper arrangement into the solids. From the resulting simulating networks, the pore connectivity distributions (PCD) and their mean values c(mean) were estimated and favorably compared to the values of connectivity c(Seaton) determined according to the method of Seaton. Both values decrease with the size of the functional groups and are weakly affected by the adsorbent employed. From the simulation pore network, the mean values of tortuosity tau(mean) were also estimated and found to be lower when N2 was used as adsorbate compared to MeOH. The values of lacunarity lambda, estimated according to the method by Allain and Cloitre using the moving box technique in the DSBM/MC simulation matrix of the pore network, indicate that the distribution of the poreless mass into the matrix increases with the size of the functional group. Finally, the internal relationships observed between the pore anisotropy b and the percentage microporosity as well as between the tortuosity tau and the pore connectivity c are discussed.

4.
J Chromatogr A ; 1074(1-2): 53-9, 2005 May 13.
Article in English | MEDLINE | ID: mdl-15941039

ABSTRACT

The diffusion parameters of binary gas mixture He (tracer gas)-N2 (carrier gas) in hybrid organic-inorganic SiO2-X porous solids which have suffered gradual functionalization with functional groups X of increasing length (X = psi, [triple bond]Si-H, [triple bond]Si-CH2OH, [triple bond]Si-(CH2)3OH, [triple bond]Si-(CH2)11CH3) are reported. The effective diffusivities Deff, the Henry law constants K as well as the tortuosity factors tau for the examined solids were estimated by a typical pulse gas chromatographic method. Analysis of the experimental results was carried out by the well-known method of linearization of moments. The moments s analysis provides a powerful means for extracting diffusion parameters from the experimental response curves The proposed methodology is simple compared to other similar studies and provides rapidly reliable data. The results of this work indicate that the effective diffusivity Deff in porous networks drops markedly as the initial porosity of the parent SiO2 sample is blocked by the functionalization of the pore surfaces with functional groups of increasing size, [triple bond]Si-H, [triple bond]Si-CH2OH, [triple bond]Si-(CH2)3OH and [triple bond]Si-(CH2)11CH3. The low values of the Henry law constants K found indicate that the adsorption of He on the porous surfaces for all the solids is weak. Also, the tortuosity factor r is proportionally correlated to the pore blocking effects and the percolation phenomena of gases flowing into the porous network.


Subject(s)
Chromatography, Gas/methods , Gases/chemistry , Silicon Dioxide/chemistry , Adsorption , Diffusion , Helium/chemistry , Mathematics , Nitrogen/chemistry
5.
J Chromatogr A ; 1074(1-2): 61-9, 2005 May 13.
Article in English | MEDLINE | ID: mdl-15941040

ABSTRACT

In this work, the pore structure of those five (5) silicas SiO2-X (see Part I) which have suffered gradual functionalization with functional groups X of increasing length (X = psi, [triple bond]Si-H, [triple bond]Si-CH2OH, [triple bond]Si-(CH2)3OH, [triple bond]Si-(CH2)11CH3), is modeled as a three-dimensional cubic network of cylindrical pores. Those hybrids organic-inorganic SiO2-X samples are characterized by different extent of pore blocking effects. The pores of samples are represented in a 9 x 9 x 9 lattice by the nodes as well the bonds that are interconnected in a so-called dual site-bond model, DSBM, network. The pore network is developed using a Monte Carlo statistical method where the cylindrical pores (nodes and bonds) are randomly assigned into the lattice, until matching of the theoretical results to the experimental data of N2 adsorption-desorption measurements. Thus, a visual picture of the porous solid is possible. This realistic network is used next in order to study the steady-state gas transport (Knudsen gas-phase and viscous diffusion) properties for the examined materials and how flow processes depend on the morphology of the pore structure. The pore diffusivity Dp and total permeability P of each porous medium is determined based on theoretical calculations and the structural statistical parameters, such as porosity epsilonp, tortuosity factor tau and connectivity c of pores is discussed with the corresponding experimental data described in Part I of this work. The results indicate clearly that the diffusion model made it possible to predict pore effective diffusivity in these porous media in very good agreement with the corresponding experimental results for all the examined solids (Part I). The pore diffusivity increases significantly as the value of the pore connectivity increases but the transport properties of the network are influenced strongly at lowest connectivity. Also the predicted tortuosity factor is related inversely to the extent of interconnection of pores in these solids, which indicates that the influence of pore branching to the tortuosity factor of the pore network decreases, as connectivity increases.


Subject(s)
Gases/chemistry , Silicon Dioxide/chemistry , 2-Propanol/chemistry , Alkanes/chemistry , Diffusion , Hydrogen/chemistry , Methanol/chemistry , Models, Chemical
6.
Langmuir ; 20(16): 6719-26, 2004 Aug 03.
Article in English | MEDLINE | ID: mdl-15274577

ABSTRACT

In this work a method for the estimation of pore anisotropy, b, in porous solids is suggested. The methodology is based on the pore size distribution and the surface area distribution, both calculated from trivial N2 adsorption-desorption isotherms. The materials used for testing the method were six MCM-Alx solids in which the ordered pore structure (for x = 0) was gradually destroyed by the introduction of Al atoms (x = 5, 10, 15, 20, 50) into the solids. Additionally, four silicas having random porosity were examined, in which the surface of the parent material SiO2 (pure silica) was gradually functionalized with organosilicate groups of various lengths (triple bond Si-H, triple bond Si-CH2OH, triple bond Si-(CH2)3OH) in order to block a variable amount of pores. As pore anisotropy, the ratio bi = Li/Di is defined where Li and Di are the length and the diameter of each group of pores i filled at a particular partial pressure (Pi/P0). The ratio of the surface area Si over the pore volume Vi, at each particular pressure (Pi/P0), is then expressed as Si3/Vi2 = 16 pi Nibi = 16 pi lambdai, where Nibi is the number of pores having anisotropy bi which are filled at each pressure (Pi/P0) and lambdai is the total anisotropy of all the pores Ni belonging to the group i of pores. Then plot of lambdai vs (Pi/P0) provides a clear picture of the variation of the total pore anisotropy lambdai as the partial pressure (Pi/P0) increases. For the functionalized silicas there appears a continuous drop of lambdai as partial pressure (Pi/P0) increases, a fact indicating that both Ni) and bi are continuously diminished. In contrast, for the MCM-Alx materials a sudden kink of lambdai appears at the partial pressure where the well-defined mesopores are filled up, a fact indicating that at this point Ni and/or bi is large. The kink disappears as the ordered porosity is destroyed by increasing the x doping in MCM-Alx. The pore anisotropy bi of each group i of pores is then estimated using the expression (Si3/Vi2) = 8 pi NiriSi and plotting log(lambdai) vs log ri. From those plots, the values of si can be found and therefore the values of bi = 0.5riSi are next defined. In the MCM-Alx materials the maximum pore anisotropy b is very high (bi approximately 250) for x = 0. Then as mesoporosity is destroyed by increasing x, the maximum b values drop gradually to b approximately 11 (x = 5), b approximately 8 (x = 10), and b approximately 3 (x = 15). For x = 20 and x = 50, the maximum b obtains values equal to unity. The same phenomena, although less profound, are also observed for the functionalized silicas, where the anisotropy b is altered by the process of functionalization and from bi approximately 0.5 for the nonfunctionalized or bi approximately 0.9 for the solid functionalized with Si-H groups drops to b = 0.3 and b = 0.2 for the solid functionalized with triple bond Si-(CH2)OH and triple bond Si-(CH2)3OH, respectively. A correlation factor F is suggested in cases where the pore model departs from the cylindrical geometry.

SELECTION OF CITATIONS
SEARCH DETAIL
...