Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Phys Rev E ; 105(1-1): 014304, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35193278

ABSTRACT

Reaction-diffusion systems implemented as dynamical processes on networks have recently renewed the interest in their self-organized collective patterns known as Turing patterns. We investigate the influence of network topology on the emerging patterns and their diversity, defined as the variety of stationary states observed with random initial conditions and the same dynamics. We show that a seemingly minor change, the removal or rewiring of a single link, can prompt dramatic changes in pattern diversity. The determinants of such critical occurrences are explored through an extensive and systematic set of numerical experiments. We identify situations where the topological sensitivity of the attractor landscape can be predicted without a full simulation of the dynamical equations, from the spectrum of the graph Laplacian and the linearized dynamics. Unexpectedly, the main determinant appears to be the degeneracy of the eigenvalues or the growth rate and not the number of unstable modes.

2.
Chaos ; 29(5): 053122, 2019 May.
Article in English | MEDLINE | ID: mdl-31154787

ABSTRACT

The Kuramoto model is an archetypal model for studying synchronization in groups of nonidentical oscillators. Each oscillator is imbued with its own personal inherent driving frequency and experiences attractive coupling forces toward all the other oscillators in the system. As the coupling increases, there exists a minimal coupling strength called the critical coupling beyond which the system moves in a collective rhythm. A unified approach for creating approximations of the critical coupling is created. It is based on an interpretation of a measurement of phase synchronization among the oscillators (the order parameter) as a function of the coupling strength. The approach allows a graphical way to develop new approximations that are provably, strict lower bounds. It is shown that several of the critical coupling bounds that have been previously studied can be interpreted in this unified framework. In addition, a process based on fixed point sampling is introduced that converts upper bounds for the critical coupling into associated lower bounds.

3.
PLoS One ; 10(5): e0125467, 2015.
Article in English | MEDLINE | ID: mdl-25932635

ABSTRACT

We study the interplay between correlations, dynamics, and networks for repeated attacks on a socio-economic network. As a model system we consider an insurance scheme against disasters that randomly hit nodes, where a node in need receives support from its network neighbors. The model is motivated by gift giving among the Maasai called Osotua. Survival of nodes under different disaster scenarios (uncorrelated, spatially, temporally and spatio-temporally correlated) and for different network architectures are studied with agent-based numerical simulations. We find that the survival rate of a node depends dramatically on the type of correlation of the disasters: Spatially and spatio-temporally correlated disasters increase the survival rate; purely temporally correlated disasters decrease it. The type of correlation also leads to strong inequality among the surviving nodes. We introduce the concept of disaster masking to explain some of the results of our simulations. We also analyze the subsets of the networks that were activated to provide support after fifty years of random disasters. They show qualitative differences for the different disaster scenarios measured by path length, degree, clustering coefficient, and number of cycles.


Subject(s)
Disasters , Models, Theoretical , Social Support , Animals , Cluster Analysis , Computer Simulation , Gift Giving , Humans , Survival Rate , Time Factors
4.
J Theor Biol ; 361: 69-80, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25036439

ABSTRACT

Signaling cascades proliferate signals received on the cell membrane to the nucleus. While noise filtering, ultra-sensitive switches, and signal amplification have all been shown to be features of such signaling cascades, it is not understood why cascades typically show three or four layers. Using singular perturbation theory, Michaelis-Menten type equations are derived for open enzymatic systems. Cascading these equations we demonstrate that the output signal as a function of time becomes sigmoidal with the addition of more layers. Furthermore, it is shown that the activation time will speed up to a point, after which more layers become superfluous. It is shown that three layers create a reliable sigmoidal response progress curve from a wide variety of time-dependent signaling inputs arriving at the cell membrane, suggesting the evolutionary benefit of the observed cascades.


Subject(s)
Cell Membrane/physiology , Models, Biological , Signal Transduction/physiology
5.
PLoS One ; 7(11): e47445, 2012.
Article in English | MEDLINE | ID: mdl-23139744

ABSTRACT

We asked how team dynamics can be captured in relation to function by considering games in the first round of the NBA 2010 play-offs as networks. Defining players as nodes and ball movements as links, we analyzed the network properties of degree centrality, clustering, entropy and flow centrality across teams and positions, to characterize the game from a network perspective and to determine whether we can assess differences in team offensive strategy by their network properties. The compiled network structure across teams reflected a fundamental attribute of basketball strategy. They primarily showed a centralized ball distribution pattern with the point guard in a leadership role. However, individual play-off teams showed variation in their relative involvement of other players/positions in ball distribution, reflected quantitatively by differences in clustering and degree centrality. We also characterized two potential alternate offensive strategies by associated variation in network structure: (1) whether teams consistently moved the ball towards their shooting specialists, measured as "uphill/downhill" flux, and (2) whether they distributed the ball in a way that reduced predictability, measured as team entropy. These network metrics quantified different aspects of team strategy, with no single metric wholly predictive of success. However, in the context of the 2010 play-offs, the values of clustering (connectedness across players) and network entropy (unpredictability of ball movement) had the most consistent association with team advancement. Our analyses demonstrate the utility of network approaches in quantifying team strategy and show that testable hypotheses can be evaluated using this approach. These analyses also highlight the richness of basketball networks as a dataset for exploring the relationships between network structure and dynamics with team organization and effectiveness.


Subject(s)
Athletes , Basketball , Achievement , Athletic Performance , Cluster Analysis , Entropy , Humans
6.
Math Biosci Eng ; 9(4): 843-76, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23311425

ABSTRACT

The major goal of evolutionary oncology is to explain how malignant traits evolve to become cancer ``hallmarks." One such hallmark---the angiogenic switch---is difficult to explain for the same reason altruism is difficult to explain. An angiogenic clone is vulnerable to ``cheater" lineages that shunt energy from angiogenesis to proliferation, allowing the cheater to outcompete cooperative phenotypes in the environment built by the cooperators. Here we show that cell- or clone-level selection is sufficient to explain the angiogenic switch, but not because of direct selection on angiogenesis factor secretion---angiogenic potential evolves only as a pleiotropic afterthought. We study a multiscale mathematical model that includes an energy management system in an evolving angiogenic tumor. The energy management model makes the counterintuitive prediction that ATP concentration in resting cells increases with increasing ATP hydrolysis, as seen in other theoretical and empirical studies. As a result, increasing ATP hydrolysis for angiogenesis can increase proliferative potential, which is the trait directly under selection. Intriguingly, this energy dynamic allows an evolutionary stable angiogenesis strategy, but this strategy is an evolutionary repeller, leading to runaway selection for extreme vascular hypo- or hyperplasia. The former case yields a tumor-on-a-tumor, or hypertumor, as predicted in other studies, and the latter case may explain vascular hyperplasia evident in certain tumor types.


Subject(s)
Angiogenic Proteins/metabolism , Genes, Switch/genetics , Models, Biological , Neoplasms/pathology , Neoplasms/physiopathology , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/physiopathology , Animals , Cell Proliferation , Computer Simulation , Evolution, Molecular , Humans , Neoplasms/complications , Neovascularization, Pathologic/complications
7.
Chaos ; 21(3): 033112, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21974647

ABSTRACT

We study catastrophic behaviors in large networked systems in the paradigm of evolutionary games by incorporating a realistic "death" or "bankruptcy" mechanism. We find that a cascading bankruptcy process can arise when defection strategies exist and individuals are vulnerable to deficit. Strikingly, we observe that, after the catastrophic cascading process terminates, cooperators are the sole survivors, regardless of the game types and of the connection patterns among individuals as determined by the topology of the underlying network. It is necessary that individuals cooperate with each other to survive the catastrophic failures. Cooperation thus becomes the optimal strategy and absolutely outperforms defection in the game evolution with respect to the "death" mechanism. Our results can be useful for understanding large-scale catastrophe in real-world systems and in particular, they may yield insights into significant social and economical phenomena such as large-scale failures of financial institutions and corporations during an economic recession.


Subject(s)
Cooperative Behavior , Economics , Game Theory , Models, Biological , Social Support , Biological Evolution
8.
J Theor Biol ; 268(1): 84-97, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-20937287

ABSTRACT

A two-patch discrete time plant-insect model coupled through insect dispersal is studied. The model is based on three different phases: Plant growth is followed by the dispersal of insects followed by insect attacks. Our objective is to understand how different intensities of dispersal impact both local and global population dynamics of the two-patch model. Special attention is paid to two situations: When the single-patch model (i.e., in the absence of dispersal) is permanent and when the single-patch model exhibits Allee-like effects. The existence and stability of synchronous and asynchronous dynamics between two patches is explored. If the single-patch system is permanent, the permanence of the system in two patches is destroyed by extremely large dispersals and large attacking rates of insects, thus creating multiple attractors. If the single-patch model exhibits Allee-like effects, analytical and numerical results indicate that small intensity of dispersals can generate source-sink dynamics between two patches, while intermediate intensity of dispersals promote the extinction of insects in both patches for certain parameter ranges. Our study suggests a possible biology control strategy to stop the invasion of a pest by controlling its migration between patches.


Subject(s)
Algorithms , Insecta/physiology , Plants/parasitology , Animals , Computer Simulation , Ecosystem , Host-Parasite Interactions , Insecta/growth & development , Models, Biological , Population Density , Population Dynamics , Population Growth
9.
J Phys Chem B ; 113(16): 5537-44, 2009 Apr 23.
Article in English | MEDLINE | ID: mdl-19326885

ABSTRACT

Along with the growth of technologies allowing accurate visualization of biochemical reactions to the scale of individual molecules has arisen an appreciation of the role of statistical fluctuations in intracellular biochemistry. The stochastic nature of metabolism can no longer be ignored. It can be probed empirically, and theoretical studies have established its importance. Traditional methods for modeling stochastic biochemistry are derived from an elegant and physically satisfying theory developed by Gillespie. However, although Gillespie's algorithm and its derivatives efficiently model small-scale systems, complex networks are harder to manage on easily available computer systems. Here we present a novel method of simulating stochastic biochemical networks using discrete events simulation techniques borrowed from manufacturing production systems. The method is very general and can be mapped to an arbitrarily complex network. As an illustration, we apply the technique to the glucose phosphorylation steps of the Embden-Meyerhof-Parnas pathway in E. coli . We show that a deterministic version of the discrete event simulation reproduces the behavior of an analogous deterministic differential equation model. The stochastic version of the same model predicts that catastrophic bottlenecks in the system are more likely than one would expect from deterministic theory.


Subject(s)
Computer Simulation , Enzymes/metabolism , Models, Chemical , Algorithms , Enzymes/chemistry , Time Factors
10.
J Biol Dyn ; 2(2): 89-101, 2008 Apr.
Article in English | MEDLINE | ID: mdl-22880694

ABSTRACT

We formulate a simple host-parasite type model to study the interaction of certain plants and herbivores. Our two-dimensional discrete-time model utilizes leaf and herbivore biomass as state variables. The parameter space consists of the growth rate of the host population and a parameter describing the damage inflicted by herbivores. We present insightful bifurcation diagrams in that parameter space. Bistability and a crisis of a strange attractor suggest two control strategies: reducing the population of the herbivore under some threshold or increasing the growth rate of the plant leaves.


Subject(s)
Herbivory , Host-Parasite Interactions , Plants , Animals , Models, Theoretical
11.
Chaos ; 15(1): 14101, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15836276

ABSTRACT

We consider networks of chaotic maps with different network topologies. In each case, they are coupled in such a way as to generate synchronized chaotic solutions. By using the methods of control of chaos we are controlling a single map into a predetermined trajectory. We analyze the reaction of the network to such a control. Specifically we show that a line of one-dimensional logistic maps that are unidirectionally coupled can be controlled from the first oscillator whereas a ring of diffusively coupled maps cannot be controlled for more than 5 maps. We show that rings with more elements can be controlled if every third map is controlled. The dependence of unidirectionally coupled maps on noise is studied. The noise level leads to a finite synchronization lengths for which maps can be controlled by a single location. A two-dimensional lattice is also studied.


Subject(s)
Nerve Net , Nonlinear Dynamics , Oscillometry , Algorithms , Animals , Diffusion , Logistic Models , Models, Statistical , Models, Theoretical
12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(1 Pt 2): 016213, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12935231

ABSTRACT

The Mathieu partial differential equation (PDE) is analyzed as a prototypical model for pattern formation due to parametric resonance. After averaging and scaling, it is shown to be a perturbed nonlinear Schrödinger equation (NLS). Adiabatic perturbation theory for solitons is applied to determine which solitons of the NLS survive the perturbation due to damping and parametric forcing. Numerical simulations compare the perturbation results to the dynamics of the Mathieu PDE. Stable and weakly unstable soliton solutions are identified. They are shown to be closely related to oscillons found in parametrically driven sand experiments.

13.
Chaos ; 11(1): 52-56, 2001 Mar.
Article in English | MEDLINE | ID: mdl-12779440

ABSTRACT

Pattern formation in a nonlinear damped Mathieu-type partial differential equation defined on one space variable is analyzed. A bifurcation analysis of an averaged equation is performed and compared to full numerical simulations. Parametric resonance leads to periodically varying patterns whose spatial structure is determined by amplitude and detuning of the periodic forcing. At onset, patterns appear subcritically and attractor crowding is observed for large detuning. The evolution of patterns under the increase of the forcing amplitude is studied. It is found that spatially homogeneous and temporally periodic solutions occur for all detuning at a certain amplitude of the forcing. Although the system is dissipative, spatial solitons are found representing domain walls creating a phase jump of the solutions. Qualitative comparisons with experiments in vertically vibrating granular media are made. (c) 2001 American Institute of Physics.

14.
Chaos ; 9(2): 499-506, 1999 Jun.
Article in English | MEDLINE | ID: mdl-12779846

ABSTRACT

The dynamics of structurally stable heteroclinic cycles connecting fixed points with one-dimensional unstable manifolds under the influence of noise is analyzed. Fokker-Planck equations for the evolution of the probability distribution of trajectories near heteroclinic cycles are solved. The influence of the magnitude of the stable and unstable eigenvalues at the fixed points and of the amplitude of the added noise on the location and shape of the probability distribution is determined. As a consequence, the jumping of solution trajectories in and out of invariant subspaces of the deterministic system can be explained. (c) 1999 American Institute of Physics.

15.
Chaos ; 4(2): 421-424, 1994 Jun.
Article in English | MEDLINE | ID: mdl-12780117

ABSTRACT

We announce the availability of a software package, called kltool, that can extract phase space information from complex spatiotemporal data via the Karhunen-Loeve analysis. Data generated by the periodic, quasiperiodic or chaotic evolution of a small number of spatially coherent structures can be processed. A key feature of kltool is that it allows the user to interact easily with the data processing and its graphical display. We illustrate the use of kltool on numerical data from the Kuramoto-Sivashinsky equation and laboratory data from a flame experiment.

SELECTION OF CITATIONS
SEARCH DETAIL
...