Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Evol Biol ; 31(1): 14-30, 2018 01.
Article in English | MEDLINE | ID: mdl-29044782

ABSTRACT

The rapid rise of phenotypic and ecological diversity in independent lake-dwelling groups of cichlids is emblematic of the East African Great Lakes. In this study, we show that similar ecologically based diversification has occurred in pike cichlids (Crenicichla) throughout the Uruguay River drainage of South America. We collected genomic data from nearly 500 ultraconserved element (UCEs) loci and >260 000 base pairs across 33 species, to obtain a phylogenetic hypothesis for the major species groups and to evaluate the relationships and genetic structure among five closely related, endemic, co-occurring species (the Uruguay River species flock; URSF). Additionally, we evaluated ecological divergence of the URSF based on body and lower pharyngeal jaw (LPJ) shape and gut contents. Across the genus, we recovered novel relationships among the species groups. We found strong support for the monophyly of the URSF; however, relationships among these species remain problematic, likely because of the rapid and recent evolution of this clade. Clustered co-ancestry analysis recovered most species as well delimited genetic groups. The URSF species exhibit species-specific body and LPJ shapes associated with specialized trophic roles. Collectively, our results suggest that the URSF consists of incipient species that arose via ecological speciation associated with the exploration of novel trophic roles.


Subject(s)
Cichlids/classification , Phylogeny , Animals , Biodiversity , Cichlids/anatomy & histology , Cichlids/genetics , Genetic Speciation , Genome , Rivers , South America , Species Specificity
2.
J Fish Biol ; 91(1): 302-316, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28589694

ABSTRACT

The goal for this project was to re-examine key morphological characters hypothesized to differentiate Gila intermedia, Gila robusta and Gila nigra and outline methods better suited for making species designations based on morphology. Using a combination of meristic counts, morphological measurements and geometric morphometrics, morphological dissimilarities were quantified among these three putative species. Traditional meristic counts and morphological measurements (i.e. distances between landmarks) were not useful for species identification. Geometric morphometrics, however, identified differences among species, while also suggesting an effect of geographic location on morphological variation. Using canonical variate analysis for the 441 fish sampled in this study, geometric morphometrics accurately predicted true group membership 100% of the time for G. nigra, 97% of the time for G. intermedia and 91% of the time for G. robusta. These results suggest that geometric morphometric analysis is necessary to identify morphological differences among the three species. Geometric morphometric analysis used in this study can be adopted by management officials as a tool to classify unidentified individuals.


Subject(s)
Cyprinidae/anatomy & histology , Cyprinidae/classification , Animals , Arizona , Phenotype , Rivers , Water Movements
3.
J Evol Biol ; 30(3): 549-560, 2017 03.
Article in English | MEDLINE | ID: mdl-27925684

ABSTRACT

Ecological opportunity is often regarded as a key factor that explains why diversity is unevenly distributed across life. Colonization of novel environments or adaptive zones may promote diversification. North American minnows exhibit an ancestral benthic-to-pelagic habitat shift that coincided with a burst in diversification. Here, we evaluate the phenotypic and ecological implications of this habitat shift by assessing craniofacial and dietary traits among 34 species and testing for morphology-diet covariation, convergence and adaptive optima. There were several instances of morphology-diet covariation such as correlations between mouth angle and the consumption of terrestrial insects and between relative gut length and the consumption of algae. After accounting for size and phylogenetic nonindependence, benthic species had longer heads, longer snouts, eyes positioned higher on their head, smaller mouth angles and longer digestive tracts than pelagic minnows. Benthic minnows also consumed more algae but less terrestrial insects, by volume, than pelagic minnows. Lastly, there were three distinct evolutionary regimes and more convergence in morphology and dietary characteristics than expected under a Brownian motion model of evolution. These findings indicate that colonization of the pelagic zone by minnows involved myriad phenotypic and dietary changes associated with exploitation of terrestrial subsidies. Thus, minnows exhibit phenotype-dietary covariation, an expansion of ecological roles and a burst in diversification rates in response to the ecological opportunity afforded by the colonization of a novel habitat.


Subject(s)
Cyprinidae , Diet , Phenotype , Animals , Ecology , Ecosystem , Insecta , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...