Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 18(11): e1010654, 2022 11.
Article in English | MEDLINE | ID: mdl-36413523

ABSTRACT

Primates constantly explore their surroundings via saccadic eye movements that bring different parts of an image into high resolution. In addition to exploring new regions in the visual field, primates also make frequent return fixations, revisiting previously foveated locations. We systematically studied a total of 44,328 return fixations out of 217,440 fixations. Return fixations were ubiquitous across different behavioral tasks, in monkeys and humans, both when subjects viewed static images and when subjects performed natural behaviors. Return fixations locations were consistent across subjects, tended to occur within short temporal offsets, and typically followed a 180-degree turn in saccadic direction. To understand the origin of return fixations, we propose a proof-of-principle, biologically-inspired and image-computable neural network model. The model combines five key modules: an image feature extractor, bottom-up saliency cues, task-relevant visual features, finite inhibition-of-return, and saccade size constraints. Even though there are no free parameters that are fine-tuned for each specific task, species, or condition, the model produces fixation sequences resembling the universal properties of return fixations. These results provide initial steps towards a mechanistic understanding of the trade-off between rapid foveal recognition and the need to scrutinize previous fixation locations.


Subject(s)
Fixation, Ocular , Saccades , Animals , Humans , Visual Fields , Primates , Cues
3.
Nat Commun ; 10(1): 3454, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31371726

ABSTRACT

Copy-number variants of the CYFIP1 gene in humans have been linked to autism spectrum disorders (ASD) and schizophrenia (SCZ), two neuropsychiatric disorders characterized by defects in brain connectivity. Here, we show that CYFIP1 plays an important role in brain functional connectivity and callosal functions. We find that Cyfip1-heterozygous mice have reduced functional connectivity and defects in white matter architecture, similar to phenotypes found in patients with ASD, SCZ and other neuropsychiatric disorders. Cyfip1-deficient mice also present decreased myelination in the callosal axons, altered presynaptic function, and impaired bilateral connectivity. Finally, Cyfip1 deficiency leads to abnormalities in motor coordination, sensorimotor gating and sensory perception, which are also known neuropsychiatric disorder-related symptoms. These results show that Cyfip1 haploinsufficiency compromises brain connectivity and function, which might explain its genetic association to neuropsychiatric disorders.


Subject(s)
Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Brain/metabolism , Genetic Predisposition to Disease/genetics , Nerve Tissue Proteins/metabolism , Schizophrenia/metabolism , Adaptor Proteins, Signal Transducing , Animals , Autism Spectrum Disorder/diagnostic imaging , Axons , Behavior, Animal , Brain/diagnostic imaging , DNA Copy Number Variations , Disease Models, Animal , Genetic Association Studies , Haploinsufficiency , Heterozygote , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/genetics , Nervous System/metabolism , Nervous System Physiological Phenomena/genetics , Phenotype , Psychomotor Performance , Schizophrenia/diagnostic imaging , Schizophrenia/genetics , Sensory Gating , White Matter
4.
Nat Commun ; 10(1): 2642, 2019 06 14.
Article in English | MEDLINE | ID: mdl-31201331

ABSTRACT

Transcranial magnetic stimulation (TMS) can non-invasively modulate neural activity in humans. Despite three decades of research, the spatial extent of the cortical area activated by TMS is still controversial. Moreover, how TMS interacts with task-related activity during motor behavior is unknown. Here, we applied single-pulse TMS over macaque parietal cortex while recording single-unit activity at various distances from the center of stimulation during grasping. The spatial extent of TMS-induced activation is remarkably restricted, affecting the spiking activity of single neurons in an area of cortex measuring less than 2 mm in diameter. In task-related neurons, TMS evokes a transient excitation followed by reduced activity, paralleled by a significantly longer grasping time. Furthermore, TMS-induced activity and task-related activity do not summate in single neurons. These results furnish crucial experimental evidence for the neural effects of TMS at the single-cell level and uncover the neural underpinnings of behavioral effects of TMS.


Subject(s)
Models, Biological , Neurons/physiology , Parietal Lobe/physiology , Transcranial Magnetic Stimulation , Animals , Behavior, Animal/physiology , Electroencephalography/instrumentation , Macaca mulatta , Magnetic Resonance Imaging , Male , Microelectrodes , Models, Animal , Parietal Lobe/diagnostic imaging , Single-Cell Analysis
5.
PLoS Biol ; 17(3): e2006405, 2019 03.
Article in English | MEDLINE | ID: mdl-30925163

ABSTRACT

Electrophysiological evidence suggested primarily the involvement of the middle temporal (MT) area in depth cue integration in macaques, as opposed to human imaging data pinpointing area V3B/kinetic occipital area (V3B/KO). To clarify this conundrum, we decoded monkey functional MRI (fMRI) responses evoked by stimuli signaling near or far depths defined by binocular disparity, relative motion, and their combination, and we compared results with those from an identical experiment previously performed in humans. Responses in macaque area MT are more discriminable when two cues concurrently signal depth, and information provided by one cue is diagnostic of depth indicated by the other. This suggests that monkey area MT computes fusion of disparity and motion depth signals, exactly as shown for human area V3B/KO. Hence, these data reconcile previously reported discrepancies between depth processing in human and monkey by showing the involvement of the dorsal stream in depth cue integration using the same technique, despite the engagement of different regions.


Subject(s)
Magnetic Resonance Imaging/methods , Neurons/metabolism , Visual Cortex/physiology , Animals , Electrophysiology , Eye Movements/physiology , Ferric Compounds/chemistry , Haplorhini , Humans , Mice, Knockout , Nanoparticles/chemistry , Neurons/cytology , Support Vector Machine , Visual Perception/physiology
6.
Cereb Cortex ; 29(9): 3636-3650, 2019 08 14.
Article in English | MEDLINE | ID: mdl-30395192

ABSTRACT

Understanding homologies and differences in auditory cortical processing in human and nonhuman primates is an essential step in elucidating the neurobiology of speech and language. Using fMRI responses to natural sounds, we investigated the representation of multiple acoustic features in auditory cortex of awake macaques and humans. Comparative analyses revealed homologous large-scale topographies not only for frequency but also for temporal and spectral modulations. In both species, posterior regions preferably encoded relatively fast temporal and coarse spectral information, whereas anterior regions encoded slow temporal and fine spectral modulations. Conversely, we observed a striking interspecies difference in cortical sensitivity to temporal modulations: While decoding from macaque auditory cortex was most accurate at fast rates (> 30 Hz), humans had highest sensitivity to ~3 Hz, a relevant rate for speech analysis. These findings suggest that characteristic tuning of human auditory cortex to slow temporal modulations is unique and may have emerged as a critical step in the evolution of speech and language.


Subject(s)
Auditory Cortex/physiology , Auditory Perception/physiology , Acoustic Stimulation , Animals , Brain Mapping , Female , Humans , Macaca mulatta , Magnetic Resonance Imaging , Male , Species Specificity , Speech Perception/physiology , Vocalization, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...