Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 102(3): 031301, 2009 Jan 23.
Article in English | MEDLINE | ID: mdl-19257339

ABSTRACT

It is often assumed that primordial perturbations are statistically isotropic, which implies, among other properties, that their power spectrum is invariant under rotations. In this article, we test this assumption by placing bounds on deviations from rotational invariance of the primordial spectrum. Using five-year Wilkinson Microwave Anisotropy Probe cosmic microwave anisotropy maps, we set limits on the overall norm and the amplitude of individual components of the primordial spectrum quadrupole and hexadecapole. We find that there is no significant evidence for primordial isotropy breaking, and constrain the relative contribution of the quadrupole and hexadecapole to be less than, respectively, 23% and 34% at 95% confidence level.

2.
Phys Rev Lett ; 88(12): 121301, 2002 Mar 25.
Article in English | MEDLINE | ID: mdl-11909442

ABSTRACT

Quintessence, a time-varying energy component that may account for the accelerated expansion of the universe, can be characterized by its equation of state and sound speed. In this paper, we show that if the quintessence density is at least 1% of the critical density at the surface of last scattering the cosmic microwave background anisotropy can distinguish between models whose sound speed is near the speed of light versus near zero, which could be useful in distinguishing competing candidates for dark energy.

3.
Phys Rev Lett ; 85(21): 4438-41, 2000 Nov 20.
Article in English | MEDLINE | ID: mdl-11082565

ABSTRACT

Increasing evidence suggests that most of the energy density of the universe consists of a dark energy component with negative pressure that causes the cosmic expansion to accelerate. We address why this component comes to dominate the universe only recently. We present a class of theories based on an evolving scalar field where the explanation is based entirely on internal dynamical properties of the solutions. In the theories we consider, the dynamics causes the scalar field to lock automatically into a negative pressure state at the onset of matter domination such that the present epoch is the earliest possible time consistent with nucleosynthesis restrictions when it can start to dominate.

SELECTION OF CITATIONS
SEARCH DETAIL
...