Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 100(5): 3685-3696, 2017 May.
Article in English | MEDLINE | ID: mdl-28318578

ABSTRACT

Extensive efforts have been made to identify more feed-efficient dairy cows, yet it is unclear how selection for feed efficiency will influence metabolic health. The objectives of this research were to determine the relationships between residual feed intake (RFI), a measure of feed efficiency, body condition score (BCS) change, and hyperketonemia (HYK) incidence. Blood and milk samples were collected twice weekly from cows 5 to 18 d postcalving for a total of 4 samples. Hyperketonemia was diagnosed at a blood ß-hydroxybutyrate (BHB) ≥1.2 mmol/L and cows were treated upon diagnosis. Dry period, calving, and final blood sampling BCS was recorded. Prior mid-lactation production, body weight, body weight change, and dry matter intake (DMI) data were used to determine RFI phenotype, calculated as the difference between observed DMI and predicted DMI. The maximum BHB concentration (BHBmax) for each cow was used to group cows into HYK or not hyperketonemic. Lactation number, BCS, and RFI data were analyzed with linear and quadratic orthogonal contrasts. Of the 570 cows sampled, 19.7% were diagnosed with HYK. The first positive HYK test occurred at 9 ± 0.9 d postpartum and the average BHB concentration at the first positive HYK test was 1.53 ± 0.14 mmol/L. In the first 30 d postpartum, HYK-positive cows had increased milk yield and fat concentration, decreased milk protein concentration, and decreased somatic cell count. Cows with a dry BCS ≥4.0, or that lost 1 or more BCS unit across the transition to lactation period, had greater BHBmax than cows with lower BCS. Prior-lactation RFI did not alter BHBmax. Avoiding over conditioning of dry cows and subsequent excessive fat mobilization during the transition period may decrease HYK incidence; however, RFI during a prior lactation does not appear to be associated with HYK onset.


Subject(s)
Diet/veterinary , Lactation , 3-Hydroxybutyric Acid/blood , Animals , Body Weight , Cattle , Female , Milk
2.
J Dairy Sci ; 98(8): 5672-87, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26074230

ABSTRACT

Previous research suggested that crude protein (CP) from canola meal (CM) was used more efficiently than CP from solvent soybean meal (SBM) by lactating dairy cows. We tested whether dietary CP content influenced relative effectiveness of equal supplemental CP from either CM or SBM. Fifty lactating Holstein cows were blocked by parity and days in milk into 10 squares (2 squares with ruminal cannulas) in a replicated 5×5 Latin square trial. Five squares were fed: (1) low (14.5-14.8%) CP with SBM, (2) low CP with CM, (3) low CP with SBM plus CM, (4) high (16.4-16.7%) CP with SBM, and (5) high CP with CM; the other 5 squares were fed the same diets except with rumen-protected Met plus Lys (RPML) added as Mepron (Degussa Corp., Kennesaw, GA) and AminoShure-L (Balchem Corp., New Hampton, NY), which were assumed to provide 8g/d of absorbed dl-Met and 12g/d of absorbed l-Lys. Diets contained [dry matter (DM) basis] 40% corn silage, 26% alfalfa silage, 14 to 23% corn grain, 2.4% mineral-vitamin premixes, and 29 to 33% neutral detergent fiber. Periods were 3wk (total 15wk), and data from the last week of each period were analyzed using the Mixed procedures of SAS (SAS Institute Inc., Cary, NC). The only effects of RPML were increased DM intake and milk urea N (MUN) and urinary N excretion and trends for decreased milk lactose and solids-not-fat concentrations and milk-N:N intake; no significant RPML × protein source interactions were detected. Higher dietary CP increased milk fat yield and tended to increase milk yield but also elevated MUN, urine volume, urinary N excretion, ruminal concentrations of ammonia and branched-chain volatile fatty acids (VFA), lowered milk lactose concentration and milk-N:N intake, and had no effect on milk true protein yield. Feeding CM instead of SBM increased feed intake, yields of milk, energy-corrected milk, and true protein, and milk-N:N intake, tended to increase fat and lactose yields, and reduced MUN, urine volume, and urinary N excretion. At low CP, MUN was lower and intake tended to be greater on SBM plus CM versus SBM alone, but MUN and N excretion were not reduced to the same degree as on CM alone. Interactions of parity × protein source and parity × CP concentration indicated that primiparous cows were more responsive than multiparous cows to improved supply of metabolizable protein. Replacing SBM with CM reduced ruminal ammonia and branched-chain VFA concentrations, indicating lower ruminal degradation of CM protein. Replacing SBM with CM improved milk and protein yield and N-utilization in lactating cows fed both low- and high-CP diets.


Subject(s)
Animal Feed , Brassica napus , Cattle/physiology , Dietary Proteins/administration & dosage , Glycine max , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Dietary Fiber , Digestion , Female , Lactation/physiology , Lysine/administration & dosage , Medicago sativa , Methionine/administration & dosage , Milk/chemistry , Nitrogen/metabolism , Parity , Pregnancy , Rumen/metabolism , Silage , Zea mays
SELECTION OF CITATIONS
SEARCH DETAIL
...