Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Ecol ; 44(2): 127-36, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12087423

ABSTRACT

The cyanobacteria belonging to the genus Nostoc fix atmospheric nitrogen, both as free-living organisms and in symbiotic associations with a wide range of hosts, including bryophytes, gymnosperms (cycads), the small water fern Azolla (Pteridophyte), the angiosperm genus Gunnera, and fungi (lichens). The Gunnera-Nostoc symbiosis is the only one that involves a flowering plant. In Chile, 12 species of Gunnera have been described with a broad distribution in the temperate region. We examined the genetic diversity of Nostoc symbionts from three populations of Gunnera tinctoria from Abtao, Chiloé Island, southern Chile, and microsymbionts from other two species of Gunnera from southern Chile, using PCR amplification of STRR (short tandemly repeated repetitive) sequences of the Nostoc infected tissue. To our knowledge, this is the first report of PCR fingerprinting obtained directly from symbiotic tissue of Gunnera. Genetic analyses revealed that Nostoc symbionts exhibit important genetic diversity among host plants, both within and between Gunnera populations. It was also found that only one Nostoc strain, or closely related strains, established symbiosis with an individual plant host.


Subject(s)
Cyanobacteria/genetics , DNA Fingerprinting , Genetic Variation , Plants , Symbiosis/physiology , Tandem Repeat Sequences/genetics , Cyanobacteria/physiology , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Polymerase Chain Reaction
2.
Science ; 287(5459): 1770-4, 2000 Mar 10.
Article in English | MEDLINE | ID: mdl-10710299

ABSTRACT

Scenarios of changes in biodiversity for the year 2100 can now be developed based on scenarios of changes in atmospheric carbon dioxide, climate, vegetation, and land use and the known sensitivity of biodiversity to these changes. This study identified a ranking of the importance of drivers of change, a ranking of the biomes with respect to expected changes, and the major sources of uncertainties. For terrestrial ecosystems, land-use change probably will have the largest effect, followed by climate change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration. For freshwater ecosystems, biotic exchange is much more important. Mediterranean climate and grassland ecosystems likely will experience the greatest proportional change in biodiversity because of the substantial influence of all drivers of biodiversity change. Northern temperate ecosystems are estimated to experience the least biodiversity change because major land-use change has already occurred. Plausible changes in biodiversity in other biomes depend on interactions among the causes of biodiversity change. These interactions represent one of the largest uncertainties in projections of future biodiversity change.


Subject(s)
Ecosystem , Agriculture , Animals , Atmosphere , Carbon Dioxide , Climate , Fresh Water , Models, Biological , Nitrogen
3.
Mol Ecol ; 8(6): 975-87, 1999 Jun.
Article in English | MEDLINE | ID: mdl-10434418

ABSTRACT

Fitzroya cupressoides (alerce, Cupressaceae) is a large and exceptionally long-lived conifer, endemic to a restricted area of southern Chile and neighbouring areas of Argentina. As a result of its high economic value, the species has been severely exploited for timber, and remnant populations are fragmented and often highly disturbed. The species is thought to have undergone a major range contraction during the last glaciation. In order to assess the extent of genetic variation using DNA markers within and between populations of this species, samples were obtained from throughout the natural range and analysed for random amplified polymorphic DNA (RAPD) variation. Eight 10-mer and three 15-mer primers were used to produce a total of 54 polymorphic bands. Shannon's diversity estimates were calculated to provide an estimate of the degree of variation within each population. Values varied from 0.343 to 0.636 with only the lowest value differing significantly from the others (Spop = 0.547). This indicated that there is a significant degree of variation within each population, and did not provide evidence for genetic 'bottle-neck' effects within the species. A pairwise distance measure calculated from the RAPD data was used as an input for principal coordinate (PCO) and AMOVA analyses. The first three principal coordinates of RAPD distances described 8.3, 5.9 and 5.4% of the total variance, respectively, and a degree of clustering of samples according to their geographical origin was detectable. AMOVA analysis indicated that although most of the variation (85.6%) was found within populations, a significant proportion (P < 0.002) was attributable to differences between populations. An UPGMA dendrogram constructed using phi ST values derived from AMOVA produced a pattern broadly similar to that produced by the PCO, highlighting differences between three main groups of populations within Chile: those from the northern Coastal Range, the southern Coastal Range and Central Depression, and the Andes. Populations from Argentina also emerged as significantly different from those in Chile. These results are interpreted in the context of the postglacial history of the species, and their implications for the development of conservation strategies for Fitzroya are discussed.


Subject(s)
Conservation of Natural Resources , Genetic Variation , Trees/genetics , DNA, Plant/chemistry , DNA, Plant/genetics , Random Amplified Polymorphic DNA Technique , South America
SELECTION OF CITATIONS
SEARCH DETAIL
...