Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Sci ; 53(6): 4294-4305, 2018.
Article in English | MEDLINE | ID: mdl-31997832

ABSTRACT

Scandium nitride has recently gained interest as a prospective compound for thermoelectric applications due to its high Seebeck coefficient. However, ScN also has a relatively high thermal conductivity, which limits its thermoelectric efficiency and figure of merit (zT). These properties motivate a search for other semiconductor materials that share the electronic structure features of ScN, but which have a lower thermal conductivity. Thus, the focus of our study is to predict the existence and stability of such materials among inherently layered equivalent ternaries that incorporate heavier atoms for enhanced phonon scattering and to calculate their thermoelectric properties. Using density functional theory calculations, the phase stability of TiMgN2, ZrMgN2 and HfMgN2 compounds has been calculated. From the computationally predicted phase diagrams for these materials, we conclude that all three compounds are stable in these stoichiometries. The stable compounds may have one of two competing crystal structures: a monoclinic structure (LiUN2 prototype) or a trigonal superstructure (NaCrS2 prototype; R 3 ¯ mH). The band structure for the two competing structures for each ternary is also calculated and predicts semiconducting behavior for all three compounds in the NaCrS2 crystal structure with an indirect band gap and semiconducting behavior for ZrMgN2 and HfMgN2 in the monoclinic crystal structure with a direct band gap. Seebeck coefficient and power factors are also predicted, showing that all three compounds in both the NaCrS2 and the LiUN2 structures have large Seebeck coefficients. The predicted stability of these compounds suggests that they can be synthesized by, e.g., physical vapor deposition.

2.
Sci Rep ; 5: 9888, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25970763

ABSTRACT

Transition metal diborides are ceramic materials with potential applications as hard protective thin films and electrical contact materials. We investigate the possibility to obtain age hardening through isostructural clustering, including spinodal decomposition, or ordering-induced precipitation in ternary diboride alloys. By means of first-principles mixing thermodynamics calculations, 45 ternary M(1)1-x M(2)xB2 alloys comprising M(i)B2 (M(i) = Mg, Al, Sc, Y, Ti, Zr, Hf, V, Nb, Ta) with AlB2 type structure are studied. In particular Al1-xTixB2 is found to be of interest for coherent isostructural decomposition with a strong driving force for phase separation, while having almost concentration independent a and c lattice parameters. The results are explained by revealing the nature of the electronic structure in these alloys, and in particular, the origin of the pseudogap at EF in TiB2, ZrB2, and HfB2.

3.
J Phys Condens Matter ; 25(46): 465801, 2013 Nov 20.
Article in English | MEDLINE | ID: mdl-24141033

ABSTRACT

Pyrite (FeS2), being a promising material for future solar technologies, has so far exhibited in experiments an open-circuit voltage (OCV) of around 0.2 V, which is much lower than the frequently quoted 'accepted' value for the fundamental bandgap of ∼0.95 eV. Absorption experiments show large subgap absorption, commonly attributed to defects or structural disorder. However, computations using density functional theory with a semi-local functional predict that the bottom of the conduction band consists of a very low intensity sulfur p-band that may be easily overlooked in experiments because of the high intensity onset that appears 0.5 eV higher in energy. The intensity of absorption into the sulfur p-band is found to be of the same magnitude as contributions from defects and disorder. Our findings suggest the need to re-examine the value of the fundamental bandgap of pyrite presently in use in the literature. If the contribution from the p-band has so far been overlooked, the substantially lowered bandgap would partly explain the discrepancy with the OCV. Furthermore, we show that more states appear on the surface within the low energy sulfur p-band, which suggests a mechanism of thermalization into those states that would further prevent extracting electrons at higher energy levels through the surface. Finally, we speculate on whether misidentified states at the conduction band onset may be present in other materials.


Subject(s)
Electric Conductivity , Iron/chemistry , Sulfides/chemistry , Absorption , Electrons , Optical Phenomena , Semiconductors , Surface Properties
4.
Phys Rev Lett ; 111(3): 036402, 2013 Jul 19.
Article in English | MEDLINE | ID: mdl-23909345

ABSTRACT

We derive an exchange energy functional of generalized gradient form with a corresponding potential that changes discontinuously at integer particle numbers. The functional is semilocal, yet incorporates key features that are connected to the derivative discontinuity of Kohn-Sham density-functional theory. We validate our construction for several paradigm systems and explain how it addresses central well-known deficiencies of antecedent semilocal methods, i.e., the description of charge transfer, properly localized orbitals, and band gaps. We find, e.g., an improved shell structure for atoms, eigenvalues that more closely correspond to ionization energies, and an improved description of band structure where localized states are lowered in energy.

5.
J Chem Theory Comput ; 5(4): 712-8, 2009 Apr 14.
Article in English | MEDLINE | ID: mdl-26609576

ABSTRACT

Predicting the polarizabilities of extended conjugated molecules with semilocal functionals has been a long-standing problem in density functional theory. These difficulties are due to the absence of a term in the typical semilocal Kohn-Sham exchange potentials that has been named "ultranonlocal". Such a term should develop in extended systems when an external electric field is applied, and it should counteract the field. We calculate the polarizabilities of polyacetylene molecules using the recently developed extended Becke-Johnson functional. Our results show that this functional predicts the polarizabilities with much better accuracy than typical semilocal functionals. Thus, the field-counteracting term in this functional, which is semilocal in the Kohn-Sham orbitals, can realistically describe real molecules. We discuss approaches of constructing an energy functional that corresponds to this potential functional, for example, via the Levy-Perdew virial relation.

SELECTION OF CITATIONS
SEARCH DETAIL
...