Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 8: 166, 2017.
Article in English | MEDLINE | ID: mdl-28270818

ABSTRACT

Cultivated tomato (Solanum lycopersicum L.) is susceptible to abiotic stresses, including drought and chilling stress, while its wild relative (Solanum habrochaites) exhibits tolerance to many abiotic stresses. Chilling roots to 6°C induces rapid-onset water stress by impeding water movement from roots to shoots. Wild S. habrochaites responds to root chilling by closing stomata and maintaining shoot turgor, while cultivated tomato fails to close stomata and wilts. This phenotypic response (shoot turgor maintenance under root chilling) is controlled by a major QTL stm9 on chromosome 9 from S. habrochaites that was previously high-resolution mapped to a 0.32 cM region, but its effects on transcriptional regulation were unknown. Here we used paired near isogenic lines (NILs) differing only for the presence or absence of the S. habrochaites introgression containing stm9 in an otherwise S. lycopersicum background to investigate global transcriptional regulation in response to rapid-onset water stress induced by root chilling. NIL175 contains the S. habrochaites introgression and exhibits tolerance to root chilling stress, while NIL163 does not contain the introgression and is susceptible. RNA from roots of the two NILs was obtained at five time points during exposure to root chilling and mRNA-Seq performed. Differential expression analysis and hierarchical clustering of transcript levels were used to determine patterns of and changes in mRNA levels. Our results show that the transcriptional response of roots exposed to chilling stress is complex, with both overlapping and unique responses in tolerant and susceptible lines. In general, susceptible NIL 163 had a more complex transcriptional response to root chilling, while NIL175 exhibited a more targeted response to the imposed stress. Our evidence suggests that both the tolerant and susceptible NILs may be primed for response to root-chilling, with many of these response genes located on chromosome 9. Furthermore, serine/threonine kinase activity likely has an important role in the root chilling response of tolerant NIL175.

2.
Theor Appl Genet ; 128(9): 1713-24, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26044122

ABSTRACT

QTL stm9 controlling rapid-onset water stress tolerance in S. habrochaites was high-resolution mapped to a chromosome 9 region that contains genes associated with abiotic stress tolerances. Wild tomato (Solanum habrochaites) exhibits tolerance to abiotic stresses, including drought and chilling. Root chilling (6 °C) induces rapid-onset water stress by impeding water movement from roots to shoots. S. habrochaites responds to such changes by closing stomata and maintaining shoot turgor, while cultivated tomato (S. lycopersicum) fails to close stomata and wilts. This response (shoot turgor maintenance under root chilling) is controlled by a major QTL (designated stm9) on chromosome 9, which was previously fine-mapped to a 2.7-cM region. Recombinant sub-near-isogenic lines for chromosome 9 were marker-selected, phenotyped for shoot turgor maintenance under root chilling in two sets of replicated experiments (Fall and Spring), and the data were used to high-resolution map QTL stm9 to a 0.32-cM region. QTL mapping revealed a single QTL that was coincident for both the Spring and Fall datasets, suggesting that the gene or genes contributing to shoot turgor maintenance under root chilling reside within the marker interval H9-T1673. In the S. lycopersicum reference genome sequence, this chromosome 9 region is gene-rich and contains representatives of gene families that have been associated with abiotic stress tolerance.


Subject(s)
Chromosome Mapping , Plant Roots/physiology , Quantitative Trait Loci , Solanum/genetics , Water/physiology , Cold Temperature , Droughts , Genetic Linkage , Genotype , Solanum lycopersicum/genetics , Phenotype , Plant Shoots/physiology , Plant Stomata/physiology , Solanum/physiology , Stress, Physiological
3.
Mol Biol Evol ; 29(6): 1497-501, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22319163

ABSTRACT

More than 150 Ma, the avian lineage separated from that of other dinosaurs and later diversified into the more than 10,000 species extant today. The early neoavian bird radiations most likely occurred in the late Cretaceous (more than 65 Ma) but left behind few if any molecular signals of their archaic evolutionary past. Retroposed elements, once established in an ancestral population, are highly valuable, virtually homoplasy-free markers of species evolution; after applying stringent orthology criteria, their phylogenetically informative presence/absence patterns are free of random noise and independent of evolutionary rate or nucleotide composition effects. We screened for early neoavian orthologous retroposon insertions and identified six markers with conflicting presence/absence patterns, whereas six additional retroposons established before or after the presumed major neoavian radiation show consistent phylogenetic patterns. The exceptionally frequent conflicting retroposon presence/absence patterns of neoavian orders are strong indicators of an extensive incomplete lineage sorting era, potentially induced by an early rapid successive speciation of ancestral Neoaves.


Subject(s)
Birds/genetics , Retroelements , Animals , Evolution, Molecular , Genetic Markers , Genetic Speciation , Mutagenesis, Insertional , Phylogeny , Polymorphism, Genetic
4.
Mol Cell Biol ; 28(8): 2509-16, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18250152

ABSTRACT

The transcription factor Adr1 activates numerous genes in nonfermentable carbon source metabolism. An unknown mechanism prevents Adr1 from stably binding to the promoters of these genes in glucose-grown cells. Glucose depletion leads to Snf1-dependent binding. Chromatin immunoprecipitation showed that the Adr1 DNA-binding domain could not be detected at the ADH2 promoter under conditions in which the binding of the full-length protein occurred. This suggested that an activation domain is required for stable binding, and coactivators may stabilize the interaction with the promoter. Artificial recruitment of Mediator tail subunits by fusion to the Adr1 DNA-binding domain overcame both the inhibition of promoter binding and glucose repression of ADH2 expression. In contrast, an Adr1 DNA-binding domain-Tbp fusion did not overcome glucose repression, although it was an efficient activator of ADH2 expression under derepressing conditions. When Mediator was artificially recruited, ADH2 expression was independent of SNF1, SAGA, and Swi/Snf, whereas ADH2 expression was dependent on these factors with wild-type Adr1. These results suggest that in the presence of glucose, the ADH2 promoter is accessible to Adr1 but that other interactions that occur when glucose is depleted do not take place. Artificial recruitment of Mediator appears to overcome this requirement and to allow stable binding and transcription under normally inhibitory conditions.


Subject(s)
Alcohol Dehydrogenase/metabolism , DNA, Fungal/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Fungal , Glucose/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/metabolism , Alcohol Dehydrogenase/genetics , Binding Sites , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/genetics , Promoter Regions, Genetic/genetics , Protein Binding , Protein Subunits/genetics , Protein Subunits/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/genetics , Transcription, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...