Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Stress Chaperones ; 28(5): 551-566, 2023 09.
Article in English | MEDLINE | ID: mdl-36933172

ABSTRACT

Life-history-oxidative stress theory predicts that elevated energy costs during reproduction reduce allocation to defences and increase cellular stress, with fitness consequences, particularly when resources are limited. As capital breeders, grey seals are a natural system in which to test this theory. We investigated oxidative damage (malondialdehyde (MDA) concentration) and cellular defences (relative mRNA abundance of heat shock proteins (Hsps) and redox enzymes (REs)) in blubber of wild female grey seals during the lactation fast (n = 17) and summer foraging (n = 13). Transcript abundance of Hsc70 increased, and Nox4, a pro-oxidant enzyme, decreased throughout lactation. Foraging females had higher mRNA abundance of some Hsps and lower RE transcript abundance and MDA concentrations, suggesting they experienced lower oxidative stress than lactating mothers, which diverted resources into pup rearing at the expense of blubber tissue damage. Lactation duration and maternal mass loss rate were both positively related to pup weaning mass. Pups whose mothers had higher blubber glutathione-S-transferase (GST) expression at early lactation gained mass more slowly. Higher glutathione peroxidase (GPx) and lower catalase (CAT) were associated with longer lactation but reduced maternal transfer efficiency and lower pup weaning mass. Cellular stress, and the ability to mount effective cellular defences, could proscribe lactation strategy in grey seal mothers and thus affect pup survival probability. These data support the life-history-oxidative stress hypothesis in a capital breeding mammal and suggest lactation is a period of heightened vulnerability to environmental factors that exacerbate cellular stress. Fitness consequences of stress may thus be accentuated during periods of rapid environmental change.


Subject(s)
Lactation , Seals, Earless , Animals , Female , Seals, Earless/metabolism , Oxidative Stress , Heat-Shock Proteins/metabolism , Fasting , Models, Animal
2.
Environ Pollut ; 316(Pt 2): 120688, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36402420

ABSTRACT

Plastic and plasticiser pollution of marine environments is a growing concern. Although phthalates, one group of plasticisers, are rapidly metabolised by mammals, they are found ubiquitously in humans and have been linked with metabolic disorders and altered adipose function. Phthalates may also present a threat to marine mammals, which need to rapidly accumulate and mobilise their large fat depots. High molecular weight (HMW) phthalates may be most problematic because they can accumulate in adipose. We used blubber explants from juvenile grey seals to examine the effects of overnight exposure to the HMW, adipogenic phthalate, benzyl butyl phthalate (BBzP) on expression of key adipose-specific genes and on phosphorylation of Akt in response to insulin. We found substantial differences in transcript abundance of Pparγ, Insig2, Fasn, Scd, Adipoq and Lep between moult stages, when animals were also experiencing differing mass changes, and between tissue depths, which likely reflect differences in blubber function. Akt abundance was higher in inner compared to outer blubber, consistent with greater metabolic activity in adipose closer to muscle than skin, and its phosphorylation was stimulated by insulin. Transcript abundance of Pparγ and Fasn (and Adipoq in some animals) were increased by short term (30 min) insulin exposure. In addition, overnight in vitro BBzP exposure altered insulin-induced changes in Pparγ (and Adipoq in some animals) transcript abundance, in a tissue depth and moult stage-specific manner. Basal or insulin-induced Akt phosphorylation was not changed. BBzP thus acted rapidly on the transcript abundance of key adipose genes in an Akt-independent manner. Our data suggest phthalate exposure could alter seal blubber development or function, although the whole animal consequences of these changes are not yet understood. Knowledge of typical phthalate exposures and toxicokinetics would help to contextualise these findings in terms of phthalate-induced metabolic disruption risk and consequences for marine mammal health.


Subject(s)
Insulin , Seals, Earless , Animals , Cetacea , Gene Expression , PPAR gamma , Proto-Oncogene Proteins c-akt/genetics
3.
Environ Int ; 152: 106506, 2021 07.
Article in English | MEDLINE | ID: mdl-33770584

ABSTRACT

Persistent organic pollutants (POPs) are endocrine disruptors that alter adipose tissue development, regulation and function. Top marine predators are particularly vulnerable because they possess large fat stores that accumulate POPs. However, links between endocrine or adipose tissue function disruption and whole animal energetics have rarely been investigated. We predicted the impact of alterations to blubber metabolic characteristics and circulating thyroid hormone (TH) levels associated with polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organochlorine pesticides (OCPs) on suckling mass gain and weaning mass in wild grey seal pups. Glucose uptake by inner blubber was a strong predictor of whole animal mass gain rate, which in turn, resulted in heavier weaning mass. Weaning mass was predicted to increase by 3.7 ± 1.59 (sem) %, through increased mass gain rate, in the absence of the previously reported suppressive effect of dioxin-like PCB (DL-PCBs) on blubber glucose uptake. PBDEs were, conversely, associated with faster mass gain. Alleviation of this effect was predicted to reduce weaning mass by 6.02 ± 1.86% (sem). To better predict POPs effects on energy balance, it is crucial to determine if and how PBDEs promote mass gain in grey seal pups. Weaning mass was negatively related to total T3 (TT3) levels. A 20% (range = 9.3-31.7%) reduction in TT3 by DL-PCBs partially overcame the effect of DL-PCB -mediated reduction in blubber glucose uptake. Overall, DL-PCBs were thus predicted to reduce weaning mass by 1.86 ± 1.60%. Organohalogen impacts on whole-animal energy balance in grey seal pups appear to partially offset each other through opposing effects on different mechanisms. POP effects were generally minor, but the largest POP-induced reductions in weaning mass were predicted to occur in pups that were already small. Since weaning mass is positively related to first-year survival, POPs may disproportionately affect smaller individuals, and could continue to have population-level impacts even when levels are relatively low compared to historical values. Our findings show how in vitro experiments combined with measurements in vivo can help elucidate mechanisms that underpin energy balance regulation and help to quantify the magnitude of disruptive effects by contaminants and other stressors in wildlife.


Subject(s)
Polychlorinated Biphenyls , Seals, Earless , Adipose Tissue , Animals , Glucose , Halogenated Diphenyl Ethers/toxicity , Polychlorinated Biphenyls/toxicity , Thyroid Hormones , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL
...