Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Chem Commun (Camb) ; 60(8): 988-991, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38167668

ABSTRACT

Delamination of the electron-transporting polymer N2200 from indium tin oxide (ITO) in aqueous electrolytes is mitigated by modifying ITO with an azide-functionalized phosphonic acid (PA) which, upon UV irradiation, reacts with the polymer. The optical, electrochemical, and spectroelectrochemical properties of N2200 thin films are retained in aqueous and non-aqueous media.

2.
ACS Energy Lett ; 8(12): 5116-5127, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38094752

ABSTRACT

Polymer semiconductors are fascinating materials that could enable delivery of chemical fuels from water and sunlight, offering several potential advantages over their inorganic counterparts. These include extensive synthetic tunability of optoelectronic and redox properties and unique opportunities to tailor catalytic sites via chemical control over the nanoenvironment. Added to this is proven functionality of polymer semiconductors in solar cells, low-cost processability, and potential for large-area scalability. Herein we discuss recent progress on soft photoelectrochemical systems and define three critical knowledge gaps that must be closed for these materials to reach their full potential. We must (1) understand the influence of electrolyte penetration on photoinduced charge separation, transport, and recombination, (2) learn to exploit the swollen polymer/electrolyte interphase to drive selective fuel formation, and (3) establish co-design criteria for soft materials that sustain function in the face of harsh chemical challenges. Achieving these formidable goals would enable tailorable systems for driving photoelectrochemical fuel production at scale.

3.
Mater Horiz ; 9(1): 471-481, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34859805

ABSTRACT

Charge transfer and energy conversion processes at semiconductor/electrolyte interfaces are controlled by local electric field distributions, which can be especially challenging to measure. Herein we leverage the low vapor pressure and vacuum compatibility of ionic liquid electrolytes to undertake a layer-by-layer, ultra-high vacuum deposition of a prototypical ionic liquid EMIM+ (1-ethyl-3-methylimidazolium) and TFSI- (bis(trifluoromethylsulfonyl)-imide) on the surfaces of different electronic materials. We consider a case-by-case study between a standard metal (Au) and four printed electronic materials, where interfaces are characterized by a combination of X-ray and ultraviolet photoemission spectroscopies (XPS/UPS). For template-stripped gold surfaces, we observe through XPS a preferential orientation of the TFSI anion at the gold surface, enabling large electric fields (∼108 eV m-1) within the first two monolayers detected by a large surface vacuum level shift (0.7 eV) in UPS. Conversely, we observe a much more random orientation on four printable semiconductor surfaces: methyl ammonium lead triiodide (MAPbI3), regioregular poly(3-hexylthiophene-2,5-diyl (P3HT)), sol-gel nickel oxide (NiOx), and PbIx-capped PbS quantum dots. For the semiconductors considered, the ionization energy (IE) of the ionic liquid at 3 ML coverage is highly substrate dependent, indicating that underlying chemical reactions are dominating interface level alignment (electronic equilibration) prior to reaching bulk electronic structure. This indicates there is no universal rule for energy level alignment, but that relative strengths of Lewis acid/base sites and ion-molecular interactions should be considered. Specifically, for P3HT, interactions are found to be relatively weak and occurring through the π-bonding structure in the thiophene ring. Alternatively, for NiOx, PbS/PbIx quantum dots, and MAPbI3, our XPS data suggest a combination of ionic bonding and Lewis acid/base reactions between the semiconductor and IL, with MAPbI3 being the most reactive surface. Collectively, our results point towards new directions in interface engineering, where strategically chosen ionic liquid-based anions and cations can be used to preferentially passivate and/or titrate surface defects of heterogeneous surfaces while simultaneously providing highly localized electric fields. These opportunities are expected to be translatable to opto-electronic and electrochemical devices, including energy conversion and storage and biosensing applications.


Subject(s)
Ionic Liquids , Imides/chemistry , Ionic Liquids/chemistry , Lewis Acids , Lewis Bases , Semiconductors
4.
ACS Appl Mater Interfaces ; 11(35): 32500-32508, 2019 Sep 04.
Article in English | MEDLINE | ID: mdl-31390181

ABSTRACT

This investigation elucidates critical Brønsted and Lewis acid-base interactions at the titanium dioxide (TiO2) surface that control the interfacial composition and, thus, the energetics of vacuum-processed methylammonium lead iodide (MAPbI3) perovskite active layers (PALs). In situ photoelectron spectroscopy analysis shows that interfacial growth, chemical composition, and energetics of co-deposited methylammonium iodide (MAI)/PbI2 thin films are significantly different on bare and (3-aminopropyl)triethoxysilane (APTES)-functionalized TiO2 surfaces. Mass spectroscopy analysis indicates that MAI dissociates into hydrogen iodide and methylamine in the gas phase and suggests that MAPbI3 nucleation is preceded by adsorption and coupling of these volatile MAI precursors. Prior to MAPbI3 nucleation on the bare TiO2 surface, we suggest that high coverages of methylamine adsorbed to surface defect sites (e.g., undercoordinated Ti atoms and hydroxyls) promote island-like growth of large, PbI2-rich nuclei that inhibit nucleation and lead to a thick substoichiometric interface layer that impedes charge transport and collection energetics. APTES functional groups passivate TiO2 surface defects and facilitate more conformal growth of small, PbI2-rich nuclei that enhance MAPbI3 nucleation and significantly improve interfacial energetics for charge transport and extraction. This work highlights the considerable influence of TiO2 surface chemistry on PAL composition and energetics, which are critical factors that impact the performance and long stability of these materials in emerging photovoltaic device technologies.

5.
ACS Appl Mater Interfaces ; 9(36): 31111-31118, 2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28832121

ABSTRACT

Herein, we consider the heterojunction formation of two prototypical metal oxides: p-type NiO and n-type ZnO. Elementally abundant, low-cost metal oxide/oxide' heterojunctions are of interest for UV optical sensing, gas sensing, photocatalysis, charge confinement layers, piezoelectric nanogenerators, and flash memory devices. These heterojunctions can also be used as current rectifiers and potentially as recombination layers in tandem photovoltaic stacks by making the two oxide layers ultrathin. In the ultrathin geometry, understanding and control of interface electronic structure and chemical reactions at the oxide/oxide' interface are critical to functionality, as oxygen atoms are shared at the interface of the dissimilar materials. In the studies presented here the extent of chemical reactions and interface band bending is monitored using X-ray and ultraviolet photoelectron spectroscopies. Interface reactivity is controlled by varying the near surface composition of nickel oxide, nickel hydroxide, and nickel oxyhydroxide using standard surface-treatment procedures. A direct correlation between relative percentage of interface hydroxyl chemistry (and hence surface Lewis basicity) and the local band edge alignment for ultrathin p-n junctions (6 nm NiO/30 nm ZnO) is observed. We propose an acid-base formulism to explain these results: the stronger the acid-base reaction, the greater the fraction of interfacial electronic states which lower the band offset between the ZnO conduction band and the NiO valence band. Increased interfacial gap states result in larger reverse bias current of the p-n junction and lower rectification ratios. The acid-base formulism could serve as a future design principle for oxide/oxide' and other heterojunctions based on dissimilar materials.

6.
ACS Appl Mater Interfaces ; 9(34): 29213-29223, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28795562

ABSTRACT

The efficiency of charge collection at the organic/transparent conducting oxide (TCO) interface in organic photovoltaic (OPV) devices affects overall device efficiency. Modifying the TCO with an electrochemically active molecule may enhance OPV efficiency by providing a charge-transfer pathway between the electrode and the organic active layer, and may also mitigate surface recombination. The synthesis and characterization of phosphonic acid-ruthenium phthalocyanine (RuPcPA) monolayer films on indium tin oxide (ITO), designed to facilitate charge harvesting at ITO electrodes, is presented in this work. The PA group was installed axially relative to the Pc plane so that upon deposition, RuPcPA molecules were preferentially aligned with the ITO surface plane. The tilt angle of 22° between the normal axes to the Pc plane and the ITO surface plane, measured by attenuated total reflectance (ATR) spectroscopy, is consistent with a predominately in-plane orientation. The effect of surface roughness on RuPcPA orientation was modeled, and a correlation was obtained between experimental and theoretical mean tilt angles. Based on electrochemical and spectroelectrochemical studies, RuPcPA monolayers are composed predominately of monomers. Electrochemical impedance spectroscopy (EIS) and potential modulated-ATR (PM-ATR) spectroscopy were used to characterize the electron-transfer (ET) kinetics of these monolayers. A rate constant of 4.0 × 103 s-1 was measured using EIS, consistent with a short tunneling distance between the chromophore and the electrode surface. Using PM-ATR, ks,opt values of 2.2 × 103 and 2.4 × 103 s-1 were measured using TE and TM polarized light, respectively; the similarity of these values is consistent with a narrow molecular orientation distribution and narrow range of tunneling distances. The ionization potential of RuPcPA-modified ITO was measured using ultraviolet photoelectron spectroscopy and the results indicate favorable energetics for hole collection at the RuPcPA/ITO interface, indicating that this type of TCO modification may be useful for enhancing charge collection efficiency in OPV devices.

7.
J Am Chem Soc ; 139(13): 4866-4878, 2017 04 05.
Article in English | MEDLINE | ID: mdl-28292175

ABSTRACT

We show for the first time that the frontier orbital energetics (conduction band minimum (CBM) and valence band maximum (VBM)) of device-relevant, methylammonium bromide (MABr)-doped, formamidinium lead trihalide perovskite (FA-PVSK) thin films can be characterized using UV-vis spectroelectrochemistry, which provides an additional and straightforward experimental technique for determining energy band values relative to more traditional methods based on photoelectron spectroscopy. FA-PVSK films are processed via a two-step deposition process, known to provide high efficiency solar cells, on semitransparent indium tin oxide (ITO) and titanium dioxide (TiO2) electrodes. Spectroelectrochemical characterization is carried out in a nonsolvent electrolyte, and the onset potential for bleaching of the FA-PVSK absorbance is used to estimate the CBM, which provides values of ca. -4.0 eV versus vacuum on both ITO and TiO2 electrodes. Since electron injection occurs from the electrode to the perovskite, the CBM is uniquely probed at the buried metal oxide/FA-PVSK interface, which is otherwise difficult to characterize for thick films. UPS characterization of the same FA-PVSK thin films provide complementary near-surface measurements of the VBM and electrode-dependent energetics. In addition to energetics, controlled electrochemical charge injection experiments in the nonsolvent electrolyte reveal decomposition pathways that are related to morphology-dependent heterogeneity in the electrochemical and chemical stability of these films. X-ray photoelectron spectroscopy of these electrochemically treated FA-PVSK films shows changes in the average near-surface stoichiometry, which suggests that lead-rich crystal termination planes are the most likely sites for electron trapping and thus nanometer-scale perovskite decomposition.

8.
Chem Rev ; 116(21): 12821-12822, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27933777
9.
ACS Appl Mater Interfaces ; 8(30): 19787-98, 2016 Aug 03.
Article in English | MEDLINE | ID: mdl-27362429

ABSTRACT

This report focuses on the evaluation of the electrochemical properties of both solution-deposited sol-gel (sg-ZnO) and sputtered (sp-ZnO) zinc oxide thin films, intended for use as electron-collecting interlayers in organic solar cells (OPVs). In the electrochemical studies (voltammetric and impedance studies), we used indium-tin oxide (ITO) over coated with either sg-ZnO or sp-ZnO interlayers, in contact with either plain electrolyte solutions, or solutions with probe redox couples. The electroactive area of exposed ITO under the ZnO interlayer was estimated by characterizing the electrochemical response of just the oxide interlayer and the charge transfer resistance from solutions with the probe redox couples. Compared to bare ITO, the effective electroactive area of ITO under sg-ZnO films was ca. 70%, 10%, and 0.3% for 40, 80, and 120 nm sg-ZnO films. More compact sp-ZnO films required only 30 nm thicknesses to achieve an effective electroactive ITO area of ca. 0.02%. We also examined the electrochemical responses of these same ITO/ZnO heterojunctions overcoated with device thickness pure poly(3-hexylthiophehe) (P3HT), and donor/acceptor blended active layers (P3HT:PCBM). Voltammetric oxidation/reduction of pure P3HT thin films on ZnO/ITO contacts showed that pinhole pathways exist in ZnO films that permit dark oxidation (ITO hole injection into P3HT). In P3HT:PCBM active layers, however, the electrochemical activity for P3HT oxidation is greatly attenuated, suggesting PCBM enrichment near the ZnO interface, effectively blocking P3HT interaction with the ITO contact. The shunt resistance, obtained from dark current-voltage behavior in full P3HT/PCBM OPVs, was dependent on both (i) the porosity of the sg-ZnO or sp-ZnO films (as revealed by probe molecule electrochemistry) and (ii) the apparent enrichment of PCBM at ZnO/P3HT:PCBM interfaces, both effects conveniently revealed by electrochemical characterization. We anticipate that these approaches will be applicable to a wider array of solution-processed interlayers for "printable" solar cells.

10.
Chem Rev ; 116(12): 7117-58, 2016 Jun 22.
Article in English | MEDLINE | ID: mdl-27227316

ABSTRACT

Transparent conducting oxides (TCOs), such as indium tin oxide and zinc oxide, play an important role as electrode materials in organic-semiconductor devices. The properties of the inorganic-organic interface-the offset between the TCO Fermi level and the relevant transport level, the extent to which the organic semiconductor can wet the oxide surface, and the influence of the surface on semiconductor morphology-significantly affect device performance. This review surveys the literature on TCO modification with phosphonic acids (PAs), which has increasingly been used to engineer these interfacial properties. The first part outlines the relevance of TCO surface modification to organic electronics, surveys methods for the synthesis of PAs, discusses the modes by which they can bind to TCO surfaces, and compares PAs to alternative organic surface modifiers. The next section discusses methods of PA monolayer deposition, the kinetics of monolayer formation, and structural evidence regarding molecular orientation on TCOs. The next sections discuss TCO work-function modification using PAs, tuning of TCO surface energy using PAs, and initiation of polymerizations from TCO-tethered PAs. Finally, studies that examine the use of PA-modified TCOs in organic light-emitting diodes and organic photovoltaics are compared.

11.
ACS Appl Mater Interfaces ; 7(43): 23912-9, 2015 Nov 04.
Article in English | MEDLINE | ID: mdl-26451458

ABSTRACT

We report a route to thin-film polymorphs of soluble TiOPc derivatives that exhibit similar near-IR absorptivities as vapor deposited thin-films of the parent TiOPc chromophore (phase-I and phase-II polymorphs) and demonstrate that solution-processed planar and bulk heterojunction solar cells fabricated with one of these derivatives exhibited photoactivity throughout the same near-IR wavelength range without compromising VOC. Solution-processed thin-films of soluble octakis(alkylthio)-substituted TiOPc derivatives 1-3 exhibit absorption extending to 1000 nm. When incorporated into OPV devices, the contributions from the lowest CT excitonic state (QB band) of 1 to device performance were evident in both PHJ and BHJ architectures, indicating sufficient driving force for PIET. This contribution was improved via intimate mixing of donor and acceptor molecules in a BHJ architecture, albeit with a decrease in efficiency. IPCE of the best performing BHJ device revealed a contribution from 1 exceeding that of acceptor PCBM, and extending to 1000 nm.

12.
J Phys Chem Lett ; 6(8): 1303-9, 2015 Apr 16.
Article in English | MEDLINE | ID: mdl-26263127

ABSTRACT

We demonstrate new approaches to the characterization of oxidized regioregular poly(3-hexylthiophene-2,5-diyl) (P3HT) that results from electronic equilibration with device-relevant high work function electrical contacts using high-resolution X-ray (XPS) and ultraviolet (UPS) photoelectron spectroscopy (PES). Careful interpretation of photoemission signals from thiophene sulfur atoms in thin (ca. 20 nm or less) P3HT films provides the ability to uniquely elucidate the products of charge transfer between the polymer and the electrical contact, which is a result of Fermi-level equilibration between the two materials. By comparing high-resolution S 2p core-level spectra to electrochemically oxidized P3HT standards, the extent of the contact doping reaction is quantified, where one in every six thiophene units (ca. 20%) in the first monolayer is oxidized. Finally, angle-resolved XPS of both pure P3HT and its blends with phenyl-C61-butyric acid methyl ester (PCBM) confirms that oxidized P3HT species exist near contacts with work functions greater than ca. 4 eV, providing a means to characterize the interface and "bulk" region of the organic semiconductor in a single film.

13.
ACS Nano ; 9(9): 8786-800, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26291717

ABSTRACT

Conduction and valence band energies (ECB, EVB) for CdSe nanorods (NRs) functionalized with Au nanoparticle (NP) tips are reported here, referenced to the vacuum scale. We use (a) UV photoemission spectroscopy (UPS) to measure EVB for NR films, utilizing advanced approaches to secondary electron background correction, satellite removal to enhance spectral contrast, and correction for shifts in local vacuum levels; and (b) waveguide-based spectroelectrochemistry to measure ECB from onset potentials for electron injection into NR films tethered to ITO. For untipped CdSe NRs, both approaches show EVB = 5.9-6.1 eV and ECB = 4.1-4.3 eV. Addition of Au tips alters the NR band edge energies and introduces midgap states, in ways that are predicted to influence the efficiency of these nanomaterials as photoelectrocatalysts. UPS results show that Au tipping shifts EVB closer to vacuum by up to 0.4 eV, shifts the apparent Fermi energy toward the middle of the band gap, and introduces additional states above EVB. Spectroelectrochemical results confirm these trends: Au tipping shifts ECB closer to vacuum, by 0.4-0.6 eV, and introduces midgap states below ECB, which are assigned as metal-semiconductor interface (MSI) states. Characterization of these band edge energies and understanding the origins of MSI states is needed to design energy conversion systems with proper band alignment between the light absorbing NR, the NP catalyst, and solution electron donors and acceptors. The complementary characterization protocols presented here should be applicable to a wide variety of thin films of heterogeneous photoactive nanomaterials, aiding in the identification of the most promising material combinations for photoelectrochemical energy conversion.

14.
ACS Appl Mater Interfaces ; 6(3): 1515-24, 2014 Feb 12.
Article in English | MEDLINE | ID: mdl-24372192

ABSTRACT

We have demonstrated that pentafluoro phenoxy boron subphthalocyanine (F5BsubPc) can function as either an electron donor or an electron acceptor layer in a planar heterojunction organic photovolatic (PHJ OPV) cell. F5BsubPc was incorporated into devices with the configurations ITO/MoO3/F5BsubPc/C60/BCP/Al (F5BsubPc used as an electron-donor/hole-transport layer) and ITO/MoO3/Cl-BsubPc/F5BsubPc/BCP/Al (F5BsubPc used as an electron-acceptor/electron-transport layer). Each unoptimized device displayed open-circuit photopotentials (Voc) close to or in excess of 1 V and respectrable power conversion efficiencies. Ultraviolet photoelectron spectroscopy (UPS) was used to characterize the band-edge offset energies at the donor/acceptor junctions. HOMO and LUMO energy level offsets for the F5BsubPc/C60 heterojunction were determined to be ca. 0.6 eV and ca. 0.7 eV, respectively. Such offsets are clearly large enough to produce rectifying J/V responses, efficient exciton dissociation, and photocurrent production at the interface. For the Cl-BsubPc/F5BsubPc heterojunction, the estimated offset energies were found to be ca. 0.1 eV. However, reasonable photovoltaic activity was observed, with photocurrent production coming from both BsubPc species layers. Incident and absorbed photon power conversion efficiencies (IPCE and APCE) showed that photocurrent production qualitatively tracked the absorbance spectra of the donor/acceptor heterojunctions, with some additional photocurrent activity on the low energy side of the absorbance band. We suggest that photocurrent production at higher wavelengths may be a result of charge-transfer species at the donor/acceptor interface. Cascade photovoltaics were also fabricated to expand on the understanding of the role of F5BsubPc in such device architectures.

15.
J Phys Chem Lett ; 4(11): 1949-52, 2013 Jun 06.
Article in English | MEDLINE | ID: mdl-26283132
16.
ACS Nano ; 6(11): 9623-36, 2012 Nov 27.
Article in English | MEDLINE | ID: mdl-23030667

ABSTRACT

We demonstrate mapping of electrical properties of heterojunctions of a molecular semiconductor (copper phthalocyanine, CuPc) and a transparent conducting oxide (indium-tin oxide, ITO), on 20-500 nm length scales, using a conductive-probe atomic force microscopy technique, scanning current spectroscopy (SCS). SCS maps are generated for CuPc/ITO heterojunctions as a function of ITO activation procedures and modification with variable chain length alkyl-phosphonic acids (PAs). We correlate differences in small length scale electrical properties with the performance of organic photovoltaic cells (OPVs) based on CuPc/C(60) heterojunctions, built on these same ITO substrates. SCS maps the "ohmicity" of ITO/CuPc heterojunctions, creating arrays of spatially resolved current-voltage (J-V) curves. Each J-V curve is fit with modified Mott-Gurney expressions, mapping a fitted exponent (γ), where deviations from γ = 2.0 suggest nonohmic behavior. ITO/CuPc/C(60)/BCP/Al OPVs built on nonactivated ITO show mainly nonohmic SCS maps and dark J-V curves with increased series resistance (R(S)), lowered fill-factors (FF), and diminished device performance, especially near the open-circuit voltage. Nearly optimal behavior is seen for OPVs built on oxygen-plasma-treated ITO contacts, which showed SCS maps comparable to heterojunctions of CuPc on clean Au. For ITO electrodes modified with PAs there is a strong correlation between PA chain length and the degree of ohmicity and uniformity of electrical response in ITO/CuPc heterojunctions. ITO electrodes modified with 6-8 carbon alkyl-PAs show uniform and nearly ohmic SCS maps, coupled with acceptable CuPc/C(60)OPV performance. ITO modified with C14 and C18 alkyl-PAs shows dramatic decreases in FF, increases in R(S), and greatly enhanced recombination losses.


Subject(s)
Conductometry/methods , Microscopy, Atomic Force/methods , Organic Chemicals/chemistry , Oxides/chemistry , Semiconductors , Electric Impedance , Materials Testing/methods , Surface Properties
17.
Acc Chem Res ; 45(3): 337-46, 2012 Mar 20.
Article in English | MEDLINE | ID: mdl-22011002

ABSTRACT

Transparent metal oxides, in particular, indium tin oxide (ITO), are critical transparent contact materials for applications in next-generation organic electronics, including organic light emitting diodes (OLEDs) and organic photovoltaics (OPVs). Understanding and controlling the surface properties of ITO allows for the molecular engineering of the ITO-organic interface, resulting in fine control of the interfacial chemistries and electronics. In particular, both surface energy matching and work function compatibility at material interfaces can result in marked improvement in OLED and OPV performance. Although there are numerous ways to change the surface properties of ITO, one of the more successful surface modifications is the use of monolayers based on organic molecules with widely variable end functional groups. Phosphonic acids (PAs) are known to bind strongly to metal oxides and form robust monolayers on many different metal oxide materials. They also demonstrate several advantages over other functionalizing moieties such as silanes or carboxylic acids. Most notably, PAs can be stored in ambient conditions without degradation, and the surface modification procedures are typically robust and easy to employ. This Account focuses on our research studying PA binding to ITO, the tunable properties of the resulting surfaces, and subsequent effects on the performance of organic electronic devices. We have used surface characterization techniques such as X-ray photoelectron spectroscopy (XPS) and infrared reflection adsorption spectroscopy (IRRAS) to determine that PAs bind to ITO in a predominantly bidentate fashion (where two of three oxygen atoms from the PA are involved in surface binding). Modification of the functional R-groups on PAs allows us to control and tune the surface energy and work function of the ITO surface. In one study using fluorinated benzyl PAs, we can keep the surface energy of ITO relatively low and constant but tune the surface work function. PA modification of ITO has resulted in materials that are more stable and more compatible with subsequently deposited organic materials, an effective work function that can be tuned by over 1 eV, and energy barriers to hole injection (OLED) or hole-harvesting (OPV) that can be well matched to the frontier orbital energies of the organic active layers, leading to better overall device properties.

18.
J Phys Chem Lett ; 3(9): 1154-8, 2012 May 03.
Article in English | MEDLINE | ID: mdl-26288050

ABSTRACT

Using a monolayer of zinc phthalocyanine (ZnPcPA) tethered to indium tin oxide (ITO) as a model for the donor/transparent conducting oxide (TCO) interface in organic photovoltaics (OPVs), we demonstrate the relationship between molecular orientation and charge-transfer rates using spectroscopic, electrochemical, and spectroelectrochemical methods. Both monomeric and aggregated forms of the phthalocyanine (Pc) are observed in ZnPcPA monolayers. Potential-modulated attenuated total reflectance (PM-ATR) measurements show that the monomeric subpopulation undergoes oxidation/reduction with ks,app = 2 × 10(2) s(-1), independent of Pc orientation. For the aggregated ZnPcPA, faster orientation-dependent charge-transfer rates are observed. For in-plane-oriented Pc aggregates, ks,app = 2 × 10(3) s(-1), whereas for upright Pc aggregates, ks,app = 7 × 10(2) s(-1). The rates for the aggregates are comparable to those required for redox-active interlayer films at the hole-collection contact in organic solar cells.

19.
J Phys Chem Lett ; 3(9): 1202-7, 2012 May 03.
Article in English | MEDLINE | ID: mdl-26288056

ABSTRACT

We use electroabsorption spectroscopy to measure the change in built-in potential (VBI) across the polymer photoactive layer in diodes where indium tin oxide electrodes are systematically modified using dipolar phosphonic acid self-assembled monolayers (SAMs) with various dipole moments. We find that VBI scales linearly with the work function (Φ) of the SAM-modified electrode over a wide range when using a solution-coated poly(p-phenylenevinylene) derivative as the active layer. However, we measure an interfacial parameter of S = eΔVBI/ΔΦ < 1, suggesting that these ITO/SAM/polymer interfaces deviate from the Schottky-Mott limit, in contrast to what has previously been reported for a number of ambient-processed organic-on-electrode systems. Our results suggest that the energetics at these ITO/SAM/polymer interfaces behave more like metal/organic interfaces previously studied in UHV despite being processed from solution.

20.
Langmuir ; 28(3): 1900-8, 2012 Jan 24.
Article in English | MEDLINE | ID: mdl-22149001

ABSTRACT

Poly(3-methylthiophene) (P3MT) was synthesized directly from indium tin oxide (ITO) electrodes modified with a phosphonic acid initiator, using Kumada catalyst transfer polymerization (KCTP). This work represents the first time that polymer thickness has been controlled in a surface initiated KCTP reaction, highlighting the utility of KCTP in achieving controlled polymerizations. Polymer film thicknesses were regulated by the variation of the solution monomer concentration and ranged from 30 to 265 nm. Electrochemical oxidative doping of these films was used to manipulate their near surface composition and effective work function. Doped states of the P3MT film are maintained even after the sample is removed from solution and potential control confirming the robustness of the films. Such materials with controllable thicknesses and electronic properties have the potential to be useful as interlayer materials for organic electronic applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...