Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 14(50): 11497-11505, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38088867

ABSTRACT

Materials that undergo singlet fission are of interest for their use in light-harvesting, photocatalysis, and quantum information science, but their ability to undergo fission can be sensitive to local variations in molecular packing. Herein we employ transient absorption microscopy, molecular dynamics simulations, and electronic structure calculations to interrogate how structures found at the edges of orthorhombic rubrene crystals impact singlet fission. Within a micrometer-scale spatial region at the edges of rubrene crystals, we find that the rate of singlet fission increases nearly 4-fold. This observation is consistent with formation of a region at crystal edges with reduced order that accelerates singlet fission by disrupting the symmetry found in rubrene's orthorhombic crystal structure. Our work demonstrates that structural distortions of singlet fission materials can be used to control fission in time and in space, potentially offering a means of controlling this process in light harvesting and quantum information applications.

2.
J Am Chem Soc ; 145(33): 18568-18577, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37565990

ABSTRACT

Quantum confinement in two-dimensional (2D) Ruddlesden-Popper (RP) perovskites leads to the formation of stable quasi-particles, including excitons and biexcitons, the latter of which may enable lasing in these materials. Due to their hybrid organic-inorganic structures and the solution phase synthesis, microcrystals of 2D RP perovskites can be quite heterogeneous, with variations in excitonic and biexcitonic properties between crystals from the same synthesis and even within individual crystals. Here, we employ one- and two-quantum two-dimensional white-light microscopy to systematically study the spatial variations of excitons and biexcitons in microcrystals of a series of 2D RP perovskites BA2MAn-1PbnI3n+1 (n = 2-4, BA= butylammonium, MA = methylammonium). We find that the average biexciton binding energy of around 60 meV is essentially independent of the perovskite layer thickness (n). We also resolve spatial variations of the exciton and biexciton energies on micron length scales within individual crystals. By comparing the one-quantum and two-quantum spectra at each pixel, we conclude that biexcitons are more sensitive to their environments than excitons. These results shed new light on the ways disorder can modify the energetic landscape of excitons and biexcitons in RP perovskites and how biexcitons can be used as a sensitive probe of the microscopic environment of a semiconductor.

3.
Nat Commun ; 13(1): 7305, 2022 Nov 27.
Article in English | MEDLINE | ID: mdl-36435875

ABSTRACT

Exciton-polaritons are hybrid states formed when molecular excitons are strongly coupled to photons trapped in an optical cavity. These systems exhibit many interesting, but not fully understood, phenomena. Here, we utilize ultrafast two-dimensional white-light spectroscopy to study donor-acceptor microcavities made from two different layers of semiconducting carbon nanotubes. We observe the delayed growth of a cross peak between the upper- and lower-polariton bands that is oftentimes obscured by Rabi contraction. We simulate the spectra and use Redfield theory to learn that energy cascades down a manifold of new electronic states created by intermolecular coupling and the two distinct bandgaps of the donor and acceptor. Energy most effectively enters the manifold when light-matter coupling is commensurate with the energy distribution of the manifold, contributing to long-range energy transfer. Our results broaden the understanding of energy transfer dynamics in exciton-polariton systems and provide evidence that long-range energy transfer benefits from moderately-coupled cavities.

4.
Anal Chem ; 94(36): 12374-12382, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36040762

ABSTRACT

A time-domain version of photothermal microscopy using an atomic force microscope (AFM) is reported, which we call Fourier transform photothermal (FTPT) spectroscopy, where the delay between two laser pulses is varied and the Fourier transform is computed. An acousto-optic modulator-based pulse shaper sets the delay and phases of the pulses shot-to-shot at 100 kHz, enabling background subtraction and data collection in the rotating frame. The pulse shaper is also used to flatten the pulse spectrum, thereby eliminating the need for normalization by the laser spectrum. We demonstrate the method on 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-Pn) microcrystals and Mn-phthalocyanine islands, confirming subdiffraction spatial resolution, and providing new spectroscopic insights likely linked to structural defects in the crystals.


Subject(s)
Lasers , Microscopy , Interferometry , Magnetic Resonance Spectroscopy , Optics and Photonics
5.
J Phys Chem Lett ; 12(37): 8972-8979, 2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34506148

ABSTRACT

We present two-dimensional white-light spectroscopy (2DWL) measurements of binary and ternary bulk heterojunctions of the polymer donor PM6 mixed with state-of-the-art nonfullerene acceptors Y6 or IT4F. The ternary film has a shorter lifetime and faster spectral diffusion than either of the binary films. 2D line shape analysis of the PM6 ground state bleach with a Kubo model determines that all three films have similar amplitudes of fluctuations (Δ = 0.29 fs-1) in their transition frequencies, but different relaxation times (ranging from 102 to 24 fs). The ternary film exhibits faster dynamics than either of the binary films. The short lifetime of the ternary blend is consistent with increased photoexcitation transfer and the fast frequency fluctuations are consistent with structural dynamics of aliphatic side chains. These results suggest that the femtosecond fluctuations of PM6 are impacted by the choice of the acceptor molecules. We hypothesize that those dynamics are either indicative, or perhaps the initial source, of structural dynamics that ultimately contribute to solar cell operation.


Subject(s)
Polymers/chemistry , Solar Energy , Microscopy, Atomic Force , Spectrophotometry
6.
J Phys Chem A ; 124(17): 3471-3483, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32255629

ABSTRACT

Surfaces and interfaces are ubiquitous in nature. From cell membranes, to photovoltaic thin films, surfaces have important function in both biological and materials systems. Spectroscopic techniques have been developed to probe systems like these, such as sum frequency generation (SFG) spectroscopies. The advantage of SFG spectroscopy, a second-order spectroscopy, is that it can distinguish between signals produced from molecules in the bulk versus on the surface. We propose a polarization scheme for third-order spectroscopy experiments, such as pump-probe and 2D spectroscopy, to select for surface signals and not bulk signals. This proposed polarization condition uses one pulse perpendicular compared to the other three to isolate cross-peaks arising from molecules with polar and uniaxial (i.e., biaxial) order at a surface, while removing the signal from bulk isotropic molecules. In this work, we focus on two of these cases: XXXY and YYYX, which differ by the sign of the cross-peak they create. We compare this technique to SFG spectroscopy and vibrational circular dichroism to provide insight to the behavior of the cross-peak signal. We propose that these singularly cross-polarized schemes provide odd-ordered spectroscopies the surface-specificity typically associated with even-ordered techniques.

SELECTION OF CITATIONS
SEARCH DETAIL
...